
Title Genetic legacy of ancient hunter-gatherer Jomon
in Japanese populations

Author(s) Yamamoto, Kenichi; Namba, Shinichi; Sonehara,
Kyuto et al.

Citation Nature Communications. 2024, 15, p. 9780

Version Type VoR

URL https://hdl.handle.net/11094/99695

rights
This article is licensed under a Creative
Commons Attribution-NonCommercial-NoDerivatives
4.0 International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Article https://doi.org/10.1038/s41467-024-54052-0

Genetic legacy of ancient hunter-gatherer
Jomon in Japanese populations

Kenichi Yamamoto 1,2,3,4, Shinichi Namba 1,5,6, Kyuto Sonehara 1,5,6,
Ken Suzuki 1,7, Saori Sakaue 1,8,9,10, Niall P. Cooke11, Shinichi Higashiue12,
Shuzo Kobayashi12,13, Hisaaki Afuso12, Kosho Matsuura12, Yojiro Mitsumoto12,
Yasuhiko Fujita12, Torao Tokuda12, the Biobank Japan Project*,
Koichi Matsuda 14,15, Takashi Gakuhari16,17, Toshimasa Yamauchi7,
Takashi Kadowaki 18, ShigekiNakagome 11,16,17 &YukinoriOkada 1,4,5,6,19

The tripartite ancestral structure is a recently proposed model for the genetic
origin of modern Japanese, comprising indigenous Jomon hunter-gatherers
and two additional continental ancestors fromNortheast Asia and East Asia. To
investigate the impact of the tripartite structure on genetic and phenotypic
variation today, we conducted biobank-scale analyses by merging Biobank
Japan (BBJ; n = 171,287) with ancient Japanese and Eurasian genomes (n = 22).
We demonstrate the applicability of the tripartite model to Japanese popula-
tions throughout the archipelago, with an extremely strong correlation
between Jomon ancestry and genomic variation among individuals. We also
find that the genetic legacy of Jomon ancestry underlies an elevated body
mass index (BMI). Genome-wide association analysis with rigorous adjust-
ments for geographical and ancestral substructures identifies 132 variants that
are informative for predicting individual Jomon ancestry. This prediction
model is validated using independent Japanese cohorts (Nagahama cohort,
n = 2993; the second cohort of BBJ, n = 72,695). We further confirm the phe-
notypic association between Jomon ancestry and BMI using East Asian indivi-
duals from UK Biobank (n = 2286). Our extensive analysis of ancient and
modern genomes, involving over 250,000 participants, provides valuable
insights into the genetic legacy of ancient hunter-gatherers in contemporary
populations.

Anatomicallymodern humans,whooriginated inAfrica, begana global
dispersal 50–60 thousand years ago (kya) through a series of migra-
tions, settlements, and admixture1,2. The arrival in East Asia can be
traced back to at least 40–50 kya, as they gradually spread across the
region3. A crucial event in human history was the encounter between
indigenous hunter-gatherers and immigrant farmers, subsequently
leading to significant shifts in lifestyle4.While this transition to farming
occurred on a global scale, its timing and process varied from one

region to another; the agricultural revolution in continental East Eur-
asia dates back to around 10 kya5.

Archeological evidence suggests that humans occupied the
Japanese archipelago, an insular region of East Eurasia, as early as
38 kya, during the Paleolithic period6. Still, our understanding
of their ancestral connection to modern populations is limited due
to the scarcity of ancient DNA data7. Among the well-studied
ancestral groups in Japan are the Jomon, a cultural group of

Received: 6 December 2023

Accepted: 30 October 2024

Check for updates

A full list of affiliations appears at the end of the paper. *A list of authors and their affiliations appears at the end of the paper. e-mail: nakagoms@tcd.ie;
yokada@sg.med.osaka-u.ac.jp

Nature Communications |         (2024) 15:9780 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9594-7050
http://orcid.org/0000-0001-9594-7050
http://orcid.org/0000-0001-9594-7050
http://orcid.org/0000-0001-9594-7050
http://orcid.org/0000-0001-9594-7050
http://orcid.org/0000-0002-7486-3146
http://orcid.org/0000-0002-7486-3146
http://orcid.org/0000-0002-7486-3146
http://orcid.org/0000-0002-7486-3146
http://orcid.org/0000-0002-7486-3146
http://orcid.org/0000-0002-4536-1761
http://orcid.org/0000-0002-4536-1761
http://orcid.org/0000-0002-4536-1761
http://orcid.org/0000-0002-4536-1761
http://orcid.org/0000-0002-4536-1761
http://orcid.org/0000-0003-1065-3593
http://orcid.org/0000-0003-1065-3593
http://orcid.org/0000-0003-1065-3593
http://orcid.org/0000-0003-1065-3593
http://orcid.org/0000-0003-1065-3593
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0001-7292-2686
http://orcid.org/0000-0001-7292-2686
http://orcid.org/0000-0001-7292-2686
http://orcid.org/0000-0001-7292-2686
http://orcid.org/0000-0001-7292-2686
http://orcid.org/0000-0002-5428-3582
http://orcid.org/0000-0002-5428-3582
http://orcid.org/0000-0002-5428-3582
http://orcid.org/0000-0002-5428-3582
http://orcid.org/0000-0002-5428-3582
http://orcid.org/0000-0001-9613-975X
http://orcid.org/0000-0001-9613-975X
http://orcid.org/0000-0001-9613-975X
http://orcid.org/0000-0001-9613-975X
http://orcid.org/0000-0001-9613-975X
http://orcid.org/0000-0002-0311-8472
http://orcid.org/0000-0002-0311-8472
http://orcid.org/0000-0002-0311-8472
http://orcid.org/0000-0002-0311-8472
http://orcid.org/0000-0002-0311-8472
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54052-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54052-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54052-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54052-0&domain=pdf
mailto:nakagoms@tcd.ie
mailto:yokada@sg.med.osaka-u.ac.jp
www.nature.com/naturecommunications


hunter-gatherer-fishers who inhabited the archipelago as far back as
16.5 kya8,9. The Jomon are notable for their pioneering use of pottery,
which is among the earliest instances in the world10. The Jomon
period lasted until ~3 kya, when immigrants from the continent
introduced rice cultivation during the Yayoi period that spanned
from 3 to 1.7 kya. This agricultural revolution prompted socio-
political developments, leading to the establishment of the Japanese
state in the Kofun period, which began around 1.7 kya and endured
for 200–300 years11.

A long-standing model of the origin of Japanese populations is a
dual-ancestral structure12,13. This model states that modern Japanese
people are a mixture of indigenous Jomon hunter-gatherers from
Southeast Asia and immigrant farmers from Northeast Asia. However,
a recent ancient DNA study provides compelling evidence that the
genetic origin of Japanese populations consists of three distinct
ancestors (i.e., tripartite ancestral structure): (1) ancient hunter-
gatherer Jomon, (2) Northeast Asian ancestry introduced during the
agrarianphase, theYayoi period, and (3) East Asianancestrybrought in
the state formation phase, the Kofun period14. This tripartite structure,
which was established during the Kofun period, persists in con-
temporary populations14–16. Japanese populations are well character-
ized with their north-to-south gradient of genomic variation17–19.
However, the applicability of the tripartite model and variability of the
three distinct ancestral components throughout the archipelago
remains unknown due to limitations in samples and geographic
representation of modern individuals used in previous studies14,15. It is
thus crucial to model this ancestral structure using comprehensive,
population-level genomic data.

Recent advancements in paleogenomics have made it possible
not only to identify diverse genetic ancestors20–23, both locally and
globally, but also to uncover their impact on health and disease in
contemporary populations, such as the exacerbation and resistance of
coronavirus disease 2019 through Neanderthal-introgressed genes24,25

or the genetic predisposition to multiple sclerosis brought by Steppe
ancestry26. However, the extent to which the human past has shaped
phenotypic variation today remains poorly understood, especially in
non-European contexts27. Here, we focus on the Japanese archipelago,
where the hunting-gathering Jomon period lasted for more than
10,000 years in the insular environment, and where the genetic rem-
nants of this ancient hunter-gatherer ancestry persist in present-day
populations.

In this study, we present an integrated analysis of ancient human
genomes (n = 22) and modern Japanese genomes, utilizing the first
cohort of Biobank Japan (BBJ, n = 171,287), one of the largest
population-based cohorts in a non-European population, encompass-
ing participants from all regions of the archipelago. Our approaches
involve five key steps: First, we evaluate the applicability of the tri-
partite ancestral model to different subpopulations defined by their
geography or genetic clusters. Second, we quantify the impact of
Jomon ancestry on phenotypic variation among Japanese individuals.
Third, we identify Jomon-related genetic variants by employing a
genome-wide association study (GWAS) method, with robust adjust-
ment for geographic and genetic substructures, and control for
genomic inflation of test statistics. Fourth, we demonstrate the pre-
dictive power of Jomon-related variants in estimating an individual’s
Jomon ancestry using independent Japanese cohorts (the Nagahama
cohort n = 2993 and the second cohort of BBJ n = 72,695). Finally, we
apply the Jomon predictive model to East Asian (EAS) individuals
within UK Biobank and replicate the phenotypic impact of Jomon
ancestry (UKB EAS, n = 2286).

Our study provides a comprehensive understanding of the
genetic legacy of ancient hunter-gatherers in contemporary descen-
dants throughout the Japanese archipelago and highlights its impact
on phenotypic variation today.

Results
Inference for the tripartite ancestral structure in Biobank Japan
dataset
To assess the fit of the tripartite model in contemporary populations,
we used BBJ GWASdata, comprising participants fromhospitals across
seven geographic regions in Japan28,29 (Fig. 1a and Supplementary
Data 1). The total number of participants is 171,287, with regional dis-
tribution from northeast to southwest throughout the archipelago as
follows: Hokkaido = 7955, Tohoku= 11,013, Kanto-Koshinetsu = 94,981,
Chubu-Hokuriku = 9489, Kinki = 25,200, Kyushu = 15,962, and
Okinawa= 5804. Our PCA defines distinct clusters (Fig. 1b), with a
separation of the Ryukyu cluster, primarily including individuals from
Okinawa, from the rest of the populations as reported in previous
studies17,18. There are also regional clusters observable from Tohoku,
Kanto-Koshinetsu, Kinki, and Kyushu respectively. Based on the PCA
results, we define five distinct genetic clusters in the Japanese popu-
lations: EastAsian_admix (EA_admix; n = 1019), Mainland (n = 159,642),
Ryukyu_admix (n = 640), Ryukyu (n = 9847), and Hokkaido_sub
(n = 139) (Fig. 1c). Population stratification is further evident even
within the Ryukyu Islands, reflecting their geographic affinities in this
local insular context (Fig. 1d, e, Yakushima; n = 431, Amami; n = 1531,
Kikai; n = 561, Okinoerabu; n = 845, Tokunoshima; n = 476, Yoron;
n = 167, Okinawa; n = 4795, Miyako; n = 827).

We then merged this diverse set of Japanese individuals with
ancient genomic data from Japan and the Eurasian continent14. To find
the sites that are present in both the array-typing genome data from
BBJ and the pseudo-diploid data from ancient humans, we converted
the highly accurate BBJ imputed dosage data (Rsq ≥0.7) into genotype
data (details in “Methods”). This conversion resulted in 2,038,260
shared variants (n = 171,287 of BBJ and n = 22 of ancient genomes). We
subsequently applied qpAdm in AdmixTools30,31, based on a set of
source populations defined in a previous study14 (see Supplemental
Data 2), to evaluate the fit of admixture models and to estimate
admixture proportions at both population and individual levels in the
biobank. To comprehensively capture the geographic and genetic
diversity of Japanese populations, we fitted the tripartite model to
geographically-defined populations throughout the Japanese archi-
pelago and the Ryukyu Islands (Fig. 1b, e), five genetically-defined
populations (Fig. 1c), as well as the entire BBJ dataset. This analysis
demonstrates that the tripartite structure provides a better fit for all
populations, both at broad and local scales, when compared to all
possible dual-ancestral structure models (Supplementary Data 3). The
only exception is EA_admix, where the population can be sufficiently
explained by a two-way admixture between Northeast Asian and East
Asian ancestry.

In the whole BBJ dataset, the proportions of the three distinct
ancestral components closely alignwith those reported in the previous
study (Jomon: 12.4%, Northeast Asia: 21.2%, and East Asia: 66.4%)14.
However, Jomon ancestry exhibits regional variation, ranging from
9.8% in Kinki to 26.1% in Okinawa (Fig. 2a). Within the Ryukyu Islands,
there is an elevated level of Jomon ancestry, with the highest propor-
tion observed on Yoron Island (Fig. 2b). Jomon ancestry is even higher
in one of the genetically-defined populations, Hokkaido_sub (31.6%,
Fig. 2c and SupplementaryData 3),which primarily includes a subset of
individuals from Hokkaido. In contrast, EA_admix, possibly repre-
senting continental individuals from East Asia, has very little Jomon
ancestry; this may explain why the admixture model without Jomon
ancestry is preferred. The Mainland cluster mirrors the proportion of
the entire BBJ as it includes the majority of the samples in the data
(159,642 out of 171,287). Even when we separate individuals from this
cluster based on their geographic origins (i.e., where the sample col-
lection took place), this proportion remains relatively consistent
across different regions (Supplementary Fig. 1). The Ryukyu cluster
represents the ancestral composition from Okinawa, while the
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proportions in the Ryukyu_admix cluster fall between those of the
Mainland and Ryukyu clusters (Supplementary Data 3).

Next, we asked whether Jomon ancestry is uniquely present in the
Japanese populations or whether this ancestry is also observable in
continental populations using f4-statistics with the form of f4(Mbuti,
Jomon; Han, X). Our target populations include those in the Simon
Genome Diversity Project (SGDP) panel, the 1000 Genomes Project
(1KG), and the subpopulations within BBJ. As shown in previous
studies8,9,14, there is no extra genetic affinity between the Jomon and
any of the populations tested, except for Ulchi in the SGDP or the East
Asians (EAS) within the 1KG (Supplementary Fig. 2). Among the 1KG
EAS population, only Japanese in Tokyo (JPT) show a significant affinity
to the Jomon. Within the BBJ participants, the Hokkaido_sub and
Ryukyu subpopulations exhibit an extremely strong affinity with the
Jomon as consistent with the higher Jomon ancestry in our admixture
modeling (Fig. 1e), as well as previous studies8,9.

Overall, our analysis provides detailed pictures of regional varia-
tion in the tripartite ancestral structures throughout the archipelago.

Variation in the tripartite structure among individuals
Our admixturemodeling reveals that two subpopulations, Ryukyu and
Hokkaido_sub, have higher proportions of Jomon ancestry compared
to the other subpopulations (Fig. 2). To visualize the genetic distance
between ancient and present-day populations, we projected the
ancient or modern individuals, who represent the three distinct
ancestors underlying the tripartite structure of modern Japanese
populations, along with additional ancient Japanese individuals (i.e.,

Yayoi and Kofun) onto the PCA plots. While the Kofun are included
within variation in the present-day populations, the Jomon are clus-
tered in a position extending from the Ryukyu and Hokkaido_sub
subpopulations. The two individuals from the Yayoi period, who are
morphologically considered as the Jomon32 but genetically admixed
between the Jomon and continental ancestry14, are positioned between
the Jomon and the present-day populations (Supplementary Fig. 3a).

Given that the population-based admixture modeling only
represents an averagedpattern in a groupof individuals,we then apply
the tripartite model to each participant in BBJ individually. This model
fits 154,339 out of the 171,287 individuals (90.1%), with varying pro-
portions of three ancestral components. The proportions of these
three ancestors are negatively correlated with each other (Supple-
mentary Fig. 3b, c), supporting a previously proposed scenario that
two continental ancestors, Northeast Asian and East Asian, are likely to
have arrived in the archipelago independently14. Approximately 5% of
the individuals did not conform to the tripartite model (8932 indivi-
duals), showing a better fit for a two-way admixture involving either
Jomon and East Asian ancestry or Northeast Asian and East Asian
ancestry. However, 28 individuals were excluded from subsequent
analysis due to insufficient support for the dual ancestry models over
the tripartite model, as indicated by nested p <0.05. There was also a
minor exception, where a model of East Asian ancestry alone, rather
than any dual structure models, was preferred in ten individuals
(Supplementary Fig. 4). It’s important to note that none of the models
could adequately fit the remaining individuals, comprising nearly
5% (7962 individuals). This is likely due to the use of a tail probability
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cut-off of 5%, which accounts for the inherent variability in the data, as
a definedproportion of all tests wouldbe expected to deviate from the
models tested.

By incorporating the proportion of Jomon ancestry onto the PCA
plots, it becomes evident that there is a noticeable gradient in the
Jomon proportion along the first and second principal components
(Fig. 3a). Indeed, the Jomon proportion has a remarkably strong cor-
relation with the first two principal components (Fig. 3b; |R| = 0.61 and
0.09 for PC1 and PC2, respectively; see Supplementary Data 4). Similar
patterns of correlation are also observable betweenNortheast Asian or
East Asian ancestry and the PCs; however, the strength of correlation is
not as pronounced as that observed for Jomon (|R| = 0.14 for Northeast
Asian and PC1; |R| = 0.26 for East Asian and PC1). The correlation
between Jomon ancestry and PCs is still evident even upon focusing
solely on individuals from the Mainland or Ryukyu cluster (Supple-
mentary Fig. 5). These findings strongly indicate that Jomon ancestry
has a critical role in shaping genomic variation among Japanese indi-
viduals at the level of PCA. Furthermore, these individual-based esti-
mates not only mirror the population-based patterns in terms of their
means but also highlight significant variation in Jomon ancestry across
the Japanese archipelago (Fig. 3c, d).

Impacts of Jomon ancestry on phenotypic variation in Japanese
populations
Next, we explored whether or not Jomon ancestry has any phenotypic
impact on present-day populations. Among 163,243 individuals from
BBJ, who were successfully modeled for their genetic ancestry, the
average proportion of the Jomon component is 12.5 ± 6.3% (mean ±
SD). There is no substantial difference in the Jomon proportion
between ages or between genders (Supplementary Fig. 6).

We then tested associations of Jomon ancestry with 80 different
complex traits by making robust adjustments for genetic and geo-
graphic subpopulations (see “Methods” and Supplementary Data 5).
To account for type I error, we set a threshold of statistical significance
at P <0.05/80 = 6.3 × 10−4, based on the Bonferroni correction. We
confirm that this threshold was calibrated by simulating 10 dummy
heritable phenotypes as negative controls (“Methods”). Our analysis
with all BBJ participants identifies significant associations with an
increase in body mass index (BMI) (Fig. 4a and Supplementary Data 6;
Beta = 0.012, Standard error [SE] = 0.003, P = 3.0 × 10−5). However, it is
important to note that regional disparity, such as the higher BMI in
Okinawa compared to the other regions33, may potentially confound
this association, even when adjusting for geographic factors as cov-
ariates. To address this concern, we confined our analysis to indivi-
duals included in the Mainland cluster (n = 152,148; see Fig. 1c). The
association with BMI remains statistically significant (Fig. 4b and
Supplementary Data 7; Beta = 0.012, SE = 0.003, P = 7.9 × 10−5). We
further confirmed the significance of the association with BMI
regardless of sex or age (see Supplementary Fig. 7).

While it may be argued that our approach is conservative, we
prioritize addressing any potential inflation of association signals
stemming from population stratification34. Therefore, it is crucial to
account for its effect by incorporating PCs as covariates, despite the
stratification originating from variation in Jomon ancestry across
individuals to some degree. To mitigate this issue, we also employed
an alternative methodology where phenotypes underwent correction
by regressing their measures with all covariates, including PCs, before
being tested for associations with Jomon ancestry. We observed a
significant association in BMI, while none of the other traits reached
statistical significance (Supplementary Fig. 8, and Supplementary
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regression. All statistical tests are two-sided and unadjusted for multiple compar-
isons. BMI Body mass index, BW Body weight, LVM Left ventricular mass, E/A E/A
ratio, RBCRed blood cell count, MCHMean corpuscular volume, LDLC low-density
lipoprotein cholesterol.
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Data 8 and 9). Taking all results together, our analyses consistently
demonstrate the robustness of the BMI signals, regardless of the
methods used for correcting population stratification (see Fig. 4 and
Supplementary Fig. 8).

To assess the impact of Jomon ancestry on BMI, we incorporated
the proportion of Jomon ancestry as a covariate in our GWAS for BMI
(Supplementary Fig. 9a and Supplementary Data 11). While the
majority of lead SNPs remain consistent, we observed a reduction in
the effect of Jomon ancestry on polygenic scores (PGS) of BMI (Sup-
plementary Fig. 9b). It is worth noting that this effect persists to some
extent, indicating a functional correlation between Jomon ancestry
and BMI-PGS. Still, the PGS tends to be inflatedwhen Jomon ancestry is
not accounted for inGWAS (Supplementary Fig. 9c),with the degreeof
inflation weakly correlating with the proportion of Jomon ancestry
(Supplementary Fig. 9d). These findings suggest that the effect sizes
estimated fromGWASwithout including Jomon ancestry as a covariate
may be biased due to residual confounding.

Our analysis also includes height, whichhas been shown to exhibit
a north-to-south gradient in Japanese populations35. The association of
Jomon ancestry with the decrease of height is observable only if PCs
are not accounted for in the test (Supplementary Fig. 10 and Supple-
mentary Data 10), indicating that this association can be confounded
by population stratification. Overall, these results suggest that the
genetic legacy of the ancient hunter-gatherer Jomon significantly
influences BMI across populations today, regardless of geographic
differences,whichmay consequently contribute to an increased risk of
obesity. Additionally, we tested the effect of the use of the Jomon
proportion on the predictive power of the polygenic score (PGS) for
BMI (see “Method”). The incremental predictive performance is lim-
ited with a magnitude of −2.8 × 10−3.

Identification of genetic variants underlying variation in Jomon
ancestry
We performed a genome-wide investigation of variants associated with
variation in Jomon ancestry among individuals. In this analysis, an indi-
vidualproportionof Jomonancestry is consideredas aproxyphenotype.
However, a conventional null hypothesis, as used in standard genotype-
phenotype association studies, is not directly applicable to this pheno-
type since it is inferred from the genomic data. To ensure robust cor-
rection for genomic and geographic subpopulations and to control for
genomic inflation of the test statistics, we adopted a double genomic
control correction method and a mixed linear model (MLM) approach
that includes PCs as covariates36. Furthermore, we conducted a meta-
analysis of the association tests for individuals within the Mainland and
Ryukyu clusters separately, as the Jomon proportions significantly differ
between these groups (Fig. 3d). To gain biological insights into the
genetic signals enriched for Jomon ancestry, we conducted stratified
linkage disequilibrium score regression (S-LDSC) on the genome-wide
meta-analyzed result. Our S-LDSC identified a significant enrichment of
the heritability in skeletal muscle cells across major cell groups (Fig. 5a).

Based on our association analysis, we classify a variant as Jomon-
related if it has a positive Z-score and reaches a genome-wide sig-
nificance (P < 5.0 × 10−8) after rigorous controlmeasures. This results in
132 independent variants identified from LD clumping (details in
“Methods”; Table 1 and Supplementary Data 12). To explore evolu-
tionary contexts of these Jomon-related variants, we examined hap-
lotype structures of the genomic regions containing Jomon-related
variants. Contrasting these haplotype structures with those of allele
frequency-matched non-Jomon-related variants (i.e., variants with
P >0.05), we find that the Jomon-related variants exhibit significantly
longer haplotypes than non-Jomon-related variants (P = 3.1 × 10−32)
(Fig. 5b, c and SupplementaryData 12). This strongly supports a Jomon
origin for these extended haplotypes, supported by strong linkage
disequilibrium throughout the genome, possibly due to the high
genetic homogeneity and small effective population size (~1000)

within the Jomonpopulation14,37. Furthermore, the persistenceof these
long Jomon-derived haplotypes in the contemporary populations can
be attributed to the relatively recent admixture with the continental
ancestors14, coupled with insufficient time for recombination to break
apart the haplotypes. Leveraging selection scan results based on sin-
gleton density score (SDS)17, which detects selection over approxi-
mately the past 100 generations38, we further observe an enrichment
of selection signals in the Jomon-derivedhaplotypes (P =0.008). These
results support the idea that the Jomon-related variants can serve as
markers for quantifying Jomon ancestry, tag Jomon-derived haplo-
types, and potentially have been subject to recent selective pressures.

These Jomon-related variants are significantly more frequent in
JPT compared to the other East Asian populations within the 1KG
dataset (Table 1, Supplementary Fig. 11, and Supplementary Data 12).
Even within the BBJ population, the Ryukyu group exhibits higher
frequencies of these variants than the mainland group, supporting
their strong linkage with the Jomon-derived segments. We measured
the fixation index (FST) for the 132 Jomon-related variants in order to
assess their specificity in the Japanese population. While there is no
major difference in FST across the East Asian populations, rs536618 at
4p12 and rs2871660 at 1q31 show relatively high FST values in the
Japanese population (Supplementary Figs. 12 and 13; Supplementary
Data 13). Notably, the top variant, rs13017060, is located in the intron
region of the NBAS gene, exhibiting pleiotropic effects on the increase
of BMI and body weight in modern Japanese populations29. It also
serves as an expression quantitative trait locus (eQTL) for NBAS in
heart muscle, as evidenced by GTEx data39. Moreover, the same is
associated with increased leg fat mass in the UK Biobank40,41. These
findings provide further evidence supporting the significant associa-
tion between Jomon ancestry and BMI.

Validation of the tripartite model and Jomon-related variants
using independent Japanese cohorts
To validate our admixture modeling of the tripartite structure, we
utilized two independent Japanese cohorts, the Nagahama cohort and
the second cohort of BBJ (BBJ-2nd). The Nagahama cohort includes
participants from Nagahama city, Shiga Prefecture, within the Kinki
area of Japan (comprising Nagahama A with n = 1549 and Nagahama B
with n = 1444)42. BBJ-2nd is an additional independent cohort, which is
distinct from the first BBJ cohort, representing various regions across
the Japanese archipelago (n = 72,695).

Our validation process consists of two different approaches: (i)
estimating the proportion of Jomon ancestry at the individual level and
(ii) deriving the Jomon ancestry prediction score as a formof PGS. The
PCA of BBJ-2nd confirms the significant correlations of Jomon ancestry
with the first two PCs (Fig. 6a; Supplementary Data 4), as observed in
the first BBJ cohort (Fig. 3a). We then derived the prediction scores of
Jomon ancestry using 132 Jomon-related variants identified from the
first BBJ cohort. Under the robust adjustment for population stratifi-
cation, the variance of Jomon ancestry explained by the prediction
scores are as follows: 014, 0.12, and 0.13 in Nagahama A, Nagahama B,
and BBJ-2nd respectively (PNagahama A = 2.5 × 10−50, PNagahama B =
1.3 × 10−40, and PBBJ-2nd < 1.0 × 10−300). Notably, the observed Jomon
proportions gradually increase in linewith the prediction scores across
the different cohorts when the scores are grouped into deciles (Fig. 6b
and Supplementary Fig. 14).

The predictive power of Jomon-related variants shows an increase
when the p-value cut-off is relaxed from 5.0 × 10−8 to 1.0 × 10−3, result-
ing in the variance of 0.27 (NagahamaA), 0.26 (Nagahama B), and 0.24
(BBJ-2nd) respectively for Jomon ancestry explained by genetic var-
iants (Supplementary Fig. 15). However, it is crucial to note that this
clumping and thresholding method has been demonstrated to
potentially overfit the data, particularly when relaxing the p-value cut-
offs43. Therefore, we adhere to a p-value cut-off of 5 × 10−8 for pre-
dicting Jomon ancestry in subsequent analysis.
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Replication of the association between Jomon ancestry and BMI
using East Asian individuals from UK Biobank
We sought to replicate our finding on the link between Jomon ancestry
and the increase of BMI using a completely independent cohort. Our
focus is on EastAsian individualswithinUKBiobank (UKBEAS).Wefirst
selected the individuals of UKB EAS based on the PCA plots (n = 2286;
Supplementary Fig. 16). The f4-test, in the form of f4(Mbuti, Jomon;
Han, UKB EAS), shows that the Jomon are symmetrically related toHan
and UKB EAS (Z =0.93). We then split UKB EAS into different groups
based on their self-reported ethnic backgrounds and performed f4-test
for each group individually (Supplementary Fig. 17). This analysis

identifies Ethnic Group (EG) 6 (i.e., the self-reported Other ethnic
population, n = 541) that shows a higher genetic affinity to Jomon than
Han with a Z-score of 5.4. None of the other EGs support a significant
affinity with Jomon, including EG5, consisting of self-reported Chinese
individuals (n = 1375). These results suggest that participants in EG6
carry Jomon ancestry and are a suitable subpopulation for our repli-
cation analysis.

By fitting the admixturemodels to the UKB EAS cohort (n = 2286),
we were able to quantify Jomon ancestry for 566 individuals. The
predictive power of the scores based on 132 Jomon-related variants
account for ~2%of the total variance in the observed Jomonproportion
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(R2 =0.02 and P = 2.7 × 10−4; Fig. 7a). This power substantially increases
when only focusing on EG 6 within UKB EAS (R2 =0.06 and
P = 3.8 × 10−4; Fig. 7b). In contrast, this prediction becomes less effec-
tive in EG5 (R2 =0.03, and P =0.002 Fig. 7c), aligning with the apparent
scarcity of Jomon ancestry in this group (Supplementary Fig. 17).

Finally, we tested the effect of Jomon ancestry on BMI in UKB EAS.
There is no significant association either in the entire UKB EAS or EG5
ofUKBEAS (Fig. 7d; Beta = 0.11, SE = 0.58, P =0.86 in the entireUKBEA;
Beta = −0.83, SE = 1.30, P = 0.52 in EG5). However, when focusing
exclusively on EG6, which exhibits a higher Jomon genetic influence,
we identify a significant association between Jomon ancestry and an
increase in BMI (Beta = 2.2, SE = 0.99, P =0.03).

Overall, these results highlight the potential influence of Jomon
ancestry on the risk of obesity in contemporarypopulations regardless
of differences in their living environments, as observed between UK
and Japan.

Discussion
Our study provides comprehensive insights into the genetic legacy of
ancient hunter-gatherers in the Japanese archipelago by combining
ancient human genomes from Japan and continental East Asia with
modern genomic data of more than 250,000 Japanese individuals.
Leveraging this extensive biobank-scale dataset, we demonstrate that
the recently proposed model for the genetic origin of modern Japa-
nese populations, known as the tripartite ancestry structure14, widely
and consistently fits better than the dual structure model across the
Japanese archipelago. The composition of the three distinct ancestors
varies among different geographic and genetic subpopulations within
Japan. Among these ancestral components, the ancient hunter-
gatherer Jomon stands out as the most influential in increasing BMI
in contemporary individuals, as well as in shaping genomic variation,
both at the individual and population levels. Our novel GWAS
approach, coupled with rigorous controls for genomic inflation fac-
tors, effectively identifies genetic variants associated with the Jomon
ancestry thatmodern Japanese possess.We have then pinpointed a set
of 132 independent variants as genetic markers for predicting an
individual’s Jomon ancestry. The predictive power of these markers is
validated with independent cohorts of Japanese populations. Fur-
thermore, we successfully replicate the phenotypic impact of Jomon
ancestry by studying a cohort of individuals who have Jomon com-
ponents as their genetic ancestor, residing in the United Kingdom.

Our analysis presents the first in-depth characterization of the
tripartite structure across the entire archipelago. It unveils substantial
variation in the proportion of Jomon ancestry, mirroring the genetic
ancestry continuum observed in present-day populations. This pro-
portion is extremely high in individuals from the Ryukyu and Hokkai-
do_sub clusters, as indicated in previous studies8,9. The continental
ancestor (i.e., Northeast Asian and East Asian) is also observable in
individuals from Okinawa. However, it is important to note that these
continental components were not directly introduced from the con-
tinent but by immigrants from the main islands of Japan, who already
possessed the tripartite ancestor15. This migration has been estimated
to have occurred around the eleventh century AD, marking the end of
the prehistoric period in the area. Until this transition, it is widely
accepted that people with Jomon-like genetic characteristics con-
tinued to inhabit the region for at least several thousand years44.
Therefore, the elevated levels of Jomon ancestry in Okinawa can be
attributed to this historical event.

In contrast to the Ryukyu or Hokkaido_sub clusters, the Kinki
region exhibits a relatively low level of Jomon ancestry. Historical
records indicate the enduring presence of governmental center in this
area, implying more frequent interactions with people from the Asian
continent than in other regions45. Our biobank-scale analysis provides
a refined picture of the genetic makeup of people throughout the
Japanese archipelago both at broad and local scales.Ta
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The finding on the significant association between increased
Jomon ancestry and the increase in BMI aligns with the observations
that people fromOkinawahave not only elevated levels of BMI but also
a higher propensity for obesity compared to those from the main
island33. The obesogenic environment in present-day populations is
certainly a substantial contributor to the ongoing obesity epidemics.
Nonetheless, we identify this phenotypic impact of Jomon ancestry in
the populations from Japan, as well as the UK, where individuals are
exposed to varying degrees of obesogenic environments. Therefore,
the ancient hunter-gatherer ancestry plays a key role in increasing BMI
in Japan, which could also be linked to the disparities in obesity pre-
valence among Asian populations residing in Western countries46. By
emphasizing the importance of incorporating Jomon ancestry as a
confounding factor in GWAS for BMI, this analysis provides a proof-of-
concept for research that bridges our human past with current health
challenges.

Given that the set of genetic variants associated with the pro-
portion of Jomon ancestry likely tags genomic segments descended
from the Jomon, they could serve as ancestral informative markers
(AIMs), offering a convenient way to predict an individual’s Jomon
ancestry. We demonstrate the predictive power of these markers by
leveraging three additional validation cohorts. Furthermore, the
Jomon-related variants are significantly enriched with active func-
tions in skeletal muscle cells, some of which are also associated with
increased BMI, body weight, and height. These findings suggest
potential adaptations related to the high physical activity required
for hunting and gathering lifestyles47, as supported by selection
scans in the Jomon showing that the top variants are associated with
increased bonemineral density37. However, the genetic legacy of this
selection may now pose a risk factor for elevated levels of BMI
through the interaction with modern environments. Our study
provides evidence of how the past action of natural selection has
shaped present-day disease risks, primarily due to rapid changes in
diet and societal lifestyle. It is important to note that further analysis
with post-Jomon genomes (e.g., Yayoi or Kofun genomes) is crucial
to uncover how Jomon segments have been inherited by descen-
dants as lifestyles transformed from hunting and gathering to
farming.

Nonetheless, our research has several caveats. First, we employed
modern genomic data converted from imputed genome-wide array
data. Consequently, ourmodern data remains ascertained, and the use
of large-scale whole-genome sequence data could offer an unbiased
set of variants for analysis. Regarding ancient genomic data, all Jomon
data used in this study are shotgun-sequenced, rather than capture-
sequenced8,9,14,48. Still, most of the data are of low-coverage and were
analyzed as pseudo-haploid data alongside the modern dataset. This
may potentially restrict our ability to establish associations between
modern and ancient genomes at a finer resolution49. However, the
emerging genotype imputation for ancient genomes may provide an
innovative solution to enhance the depth of genotypic profiles derived
from such low-coverage data37,50,51.

In summary, our integrated analysis of modern and ancient gen-
omes unveils the genetic legacy of ancient hunter-gatherers in popu-
lations today and its impact on phenotypic variation, shedding light on
the significance of understanding a person’s genetic ancestry not only
for tracing their genetic origins but also for controlling confounding
effects in GWAS. The field of ancient genomics is rapidly evolving, and
future research that encompasses a diverse range of ancient humans
across various time periods and geographic locations will be essential
in providing a more comprehensive understanding of the extent to
which thehumanpast has shapedgenomic andphenotypic variation in
contemporary populations.

Methods
Biobank Japan (BBJ) dataset
Weused 171,287 individuals from thefirst cohort of BBJ, which enrolled
participants between 2003 and 2007. BBJ is a hospital-based genome
cohort that includedparticipants affectedby at least oneof 47diseases
from 12 medical institutes located in seven regions in Japan28. All par-
ticipants provided written informed consent, which was approved by
the ethical committees of the Institute of Medical Science, the Uni-
versity of Tokyo. This studywas approvedby the ethical committees of
Osaka University Graduate School ofMedicine andGraduate School of
Medicine, the University of Tokyo.

We excluded (i) individuals with lower call rates (<99%), (ii) closely
related individuals with genetic relatedness ≥0.178 calculated from a
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genetic related matrix (GRM) by GCTA (version 1.93.3beta2), or (iii)
individuals were excluded if they were positioned far from the Japa-
nese cluster definedwithin the 1000Genomes Project (1KG) dataset in
PCA plots using PLINK2 (v2.00a2.3). Based on where participants were
registered, we defined seven geographically-defined populations for
the Japanese archipelago (i.e., Hokkaido, Tohoku, Kanto-Koshinetsu,
Chubu-Hokuriku, Kinki, Kyushu, andOkinawa, which are ordered from
northeast to southwest Japan) and eight populations for the Ryukyu
Islands (i.e., Yakushima, Amami, Kikai, Okinoerabu, Tokunoshima,
Yoron, Okinawa, andMiyako). The five subpopulations were identified
from visual inspection of the PCA plots (i.e., Mainland, Ryukyu, Ryu-
kyu_admix, EA_admix, and Hokkaido_sub).

BBJ GWAS data were genotyped using the Illumina Huma-
nOmniExpressExome BeadChip or a combination of the Illumina
HumanOmniExpress and HumanExome BeadChips. The quality con-
trol of the genotypes has been described elsewhere29,52. In brief, we
excluded variants with the following criteria: (i) call rate <99%, (ii) P
value for Hardy-Weinberg equilibrium (HWE) < 1.0 × 10−6, (iii) number

of heterozygotes <5, and (iv) a concordance rate <99.5% or a non-
reference concordance rate between GWAS array and whole genome
sequencing. The genotype data were phased by Eagle v2 and imputed
with WGSmerged the 1000 Genomes Project Phase3v5 (n = 2504) and
BBJ1K WGS (n = 1037) using Mimimac3 software (2.0.1).

Data merging between modern and ancient genomic data
We used ancient genomes from the Japanese archipelago and East
Eurasian continent, which had been previously compiled and inte-
grated with the Simons Genome Diversity Project (SGDP) panel
(SGDP_Ancient)14. This SGDP_Ancinet dataset includes 14 ancient
Japanese that were all shotgun sequenced. Under the stringent quality
control (e.g., ancient DNA damage or low-coverage data), the ancient
genomes (n = 22) were pseudo-diploid called for total 3,867,366 sites
that were transversion only and a minor allele frequency of 1%14.
To further merge ancient genome data with the BBJ genotype data,
we converted the accurately imputed dosage data of BBJ (Rsq ≥0.7)
to genotype data using PLINK2 with the following options:

 Predicted Jomon component score decile

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10

 O
bs

er
ve

d 
Jo

m
on

 p
ro

po
rti

on

 Predicted Jomon component score decile

 O
bs

er
ve

d 
Jo

m
on

 p
ro

po
rti

on

Et
hn

ic 
gr

ou
p 

in
 U

KB
 E

AS

 Predicted Jomon component score decile

 O
bs

er
ve

d 
Jo

m
on

 p
ro

po
rti

on

Ethnic group 5 (n =  308)

a) b)

c) d)

R2 = 0.03, P = 0.002

All
n = 566

EG5
n = 308

EG6
n = 200

Beta coefficient

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

All paritcipants (n = 566)
R2 = 0.02, P = 2.7×10-4

Ethnic group 6 (n = 200)
R2 = 0.06, P = 3.8×10-4

−2 0 2 4

*

Fig. 7 | Prediction of Jomon ancestry and replication of phenotypic association
using UKB EAS. Jomon component prediction scores are split into deciles. The
boxplot shows the distribution of observed Jomon proportions in a given decile of
the predicted scores based on (a) all UKB EAS participants (n = 566), (b) EG6 (self-
reported Other ethnic population; n = 200), and (c) EG5 (self-reported Chinese
population; n = 308). The EG number is referred from Data-coding of UKB. d The
forest plots represent the effect sizeof Jomonancestry onBMI inUKBEAS, EG5, and
EG6. Squares indicate the point estimates, while error bars indicate 95% confidence

intervals. Asterisks representP <0.05 (P =0.03 inEG6). In (a,b, c), boxesdenote the
interquartile range (IQR) and the median is shown as white horizontal bars; whis-
kers extend to 1.5 times the IQR; outliers are shownas individual points.R2 indicates
the squared value of the Pearson’s correlation coefficient between the prediction
score and the residuals of the Jomonproportion regressed outwith 10 PCs. P-values
reflect two-sided tests. In (d), P-values are computed by linear regression. All sta-
tistical tests are two-sided and unadjusted for multiple comparisons.

Article https://doi.org/10.1038/s41467-024-54052-0

Nature Communications |         (2024) 15:9780 10

www.nature.com/naturecommunications


fill-missing-from-dosage and hard-call-threshold 0.499. Then, we
extracted sites that are present in both SGDP_Ancient and BBJ geno-
type data using PLINK (v1.90b4.4), resulting in thefinalmergeddataset
containing a total of 2,038,260 sites.

Admixture modeling and f4 tests
We applied qpAdm in AdmixTools (version 7.0.2)30 to the final merged
data. In linewith a previous study14, our analysis only used transversion
sites with global minor allele frequencies of 1%, coupled with the
option of “allsnps: NO.” In qpAdm,we set the left and right populations
as the source of admixture and reference populations, respectively.
We then selectednine Eurasians as a right population; Sardinian (n = 3),
Kusunda (n = 2), Papuan (n = 14), Dai (n = 4), Ami (n = 2), Naxi (n = 3)53,
Tianyuan (n = 1)3,54, Chokhopani (n = 1)3,54, andMal’ta (n = 1)55. As the left
population, we set three ancient populations: Jomon (n = 12)8,9,14,48,
Northeast Asian (n = 2; WLR_BA_o and HMMH_MN, Bronze Age and
MiddleNeolithic individuals from theWest LiaoRiver basin)56, andHan
(n = 3; the SGDP panel, details in Supplementary Data 2)14.

We evaluated whether the tripartite structure provides a better
fit to the data than any other possible scenarios at population levels
based on p-values for nested models with a cut-off of 0.05. These
alternative models include dual structure models involving any
combination of Jomon, Northeast Asian, and East Asian ancestry, as
well as single ancestry models. When conducting admixture model-
ing at individual levels, we considered the tripartite model to be a
good fit if (i) a tail probability was >0.05 and/or (ii) estimates of
admixture fractions were feasible (i.e., >0.0 and <1.0). The correla-
tion of admixture proportions of the three distinct ancestors was
calculated using Pearson’s method. For individuals who did not
support the tripartite model due to the tail probability being below
5%, we sought to identify an alternative dual ancestry model with the
highest tail probability, subsequently confirmed through nested
p > 0.05 by comparing the tripartite and dual structure models. If a
single ancestry model was plausible, we further assessed whether a
specific ancestor alone can adequately explain the individual using
the nested p-values.

The f4-statistics were measured in the form of f4(Mbuti, Jomon;
Han,X) using qpDstatwith the f4mode inAdmixTools.Weused the BBJ
and the populations in the 1KG (n = 2504) or the SGDP as target
populations (X in the form).

Curation of phenotypes in Biobank Japan
BBJ collected clinical conditions, laboratory data, and behavioral habit
information for all participants through interviews and reviews of
medical records using a standardized questionnaire. We selected 80
traits (3 anthropometrics, 55 biomarkers, 2 behavioral habits, 2
reproductive traits, and 18 diseases). We utilized the data for indivi-
duals over the age of 18 years, but only included the drinking and
smoking traits for those over 20 years. For quantitative biomarkers, we
applied the same processing and quality control methods as pre-
viously reported (Supplementary Data 4)19,29. In brief, we used the
laboratory values measured during the participants’ first visit to the
recruitment center and adjusted the values based on the type of
medication used. We then applied a rank-based inverse normal trans-
formation to normalize biomarker traits. Behavioral traits, including
drinking and smoking history (ever versus never drinking and ever
versus never smoking), were analyzed as binary phenotypes57,58.
Reproductive traits were coded as age at menarche and age at
menopause59. We excluded individuals if their age at menarche was
below 10 or above 20 years, or if their age at menopause was below 40
or above 60 years. Patients with myocardial infarction, stable angina,
andunstable anginawere reclassified as having coronary arterydisease
(CAD)60. 18 diseases were selected from a group of target diseases in
BBJ, with sufficient numbers of cases and controls (Arrhythmia,
Asthma, Cataract, CAD, Dyslipidemia, Ischemic stroke, Congestive

heart failure, Osteoporosis, Glaucoma, Chronic hepatitis C, Colorectal
cancer, Gastric cancer, Pollinosis, Urolithiasis, Rheumatoid arthritis,
Prostate cancer, Breast cancer, and Type 2 diabetes). Individuals who
were not affected by a particular disease under study were treated as
controls.

In addition, we set a dummy phenotype as a negative control. We
simulated 10 phenotypes with predefined heritability (h2 =0.5) from
10,000 causal variants randomly sampled from BBJ GWAS data using
the GCTA GWAS simulation method61. The values were normalized by
applying rank-based inverse normal transformation.

Phenotypic impact of Jomon ancestry in Japanese populations
Associations between Jomon ancestry and traits were tested using a
glm() function implemented in R software (version 4.1.0).We applied a
linear regression model to quantitative traits and a logistic regression
model to diseases and behavioral habits, with adjustment for covari-
ates. The proportionof Jomon ancestrywasnormalized using the rank-
based inverse normal transformation method. As covariates, we
included sex, age, age squared, top 20 PCs, 45 disease statuses, geo-
graphic regions, PCA clusters, and trait specific covariates listed in
Supplementary Data 5. For BMI, we further tested the association with
Jomon ancestry, stratified by sex and age groups, with the age
threshold set at 65 years old, which reflects a mean age among the BBJ
participants.

To address potential multicollinearity issues between Jomon
ancestry and PCs, we employed an alternative approach. Initially, we
conducted regression analysis of the quantitative trait measurements
on all covariates, including PCs. Subsequently, we tested the associa-
tions between Jomon ancestry and the residuals derived from this
regression using a linear regression model.

Assessment of genome-wide estimation and polygenic predic-
tion with and without Jomon ancestry
We investigated the influence of the Jomon proportions on GWAS for
BMI and the accuracy of BMI PGS. We performed BMI GWAS on all BBJ
participants using a generalized MLM approach of GCTA-fastGWA62.
We employed a sparse GRM constructed with variants subject to
minimal LDpruning. Covariates in theoriginal BMIGWAS included sex,
age, age squared, the top 20 PCs, and 45 disease statuses. To evaluate
the impact of Jomon ancestry, we introduced Jomon proportions as an
additional covariate and compared the results with those obtained
from the original GWAS.

To compute PGS, we adopted a five-fold leave-one-group-out
GWAS method due to the absence of independent external refer-
ence for GWASs or genotype data with Japanese ancestry19,63. In
brief, we initially split the BBJ individuals randomly into five subsets.
We then performed BMI GWAS on samples, excluding the subset
under investigation (i.e., target subset), using GCTA-fastGWA. To
estimate the posterior effects of SNPs fromGWAS summary data, we
utilized PRS-CS-auto (version Jun 4, 2021) with the HapMap3 LD
reference panel of 1KG EAS64,65. These posteriors of effect sizes were
estimated both from the original GWAS and from the GWAS with the
covariate of Jomon ancestry. Finally, we applied the PLINK2 score
function to compute PGS for individuals within the target subset,
comparing those scores with and without the Jomon ancestry
covariate.

The incremental prediction performance of the Jomon ancestry
was quantified with the difference in R2 as follows:

R2
PGS+ Jomon=R

2
PGS

� �
� 1 ð1Þ

where R2
PGS is the R2 of PGS modeled by trait ~PGS+ covariates (sex,

age, age squared, the top 20 PCs, 45 disease status, geographic
regions, and PCA clusters), while R2

PGS+Jomon is the R2 of the same PGS
model but with the additional inclusion of the Jomon proportion.
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Identification of Jomon-related variants
To detect genetic variants associated with Jomon ancestry, we con-
ducted a genome-wide association analysis between the Jomon pro-
portions and 6,861,976 biallelic variants (MAF ≥ 1% and Rsq≥0.7). To
strictly control the genomic inflation factor of test statistics, we
adopted the following correction methods: (i) MLM-based approach
using GCTA-fastGWA with the adjustment of covariates: age, age
squared, sex, the top 20 PCs, 45 disease status, geographic regions,
and PCA clusters; (ii) fixed-effect meta-analysis of Mainland summary
data including individuals from the Mainland and EA_admix clusters
(n = 151,075) and of Ryukyu summary data including individuals from
the Ryukyu, Ryukyu admix, and Hokkaido_sub clusters (n = 10,080)
using METAL (version 2020-05-05); and (iii) double genomic control
correction method using METAL36. We then computed a Z score for
each variant by considering the sign of the beta coefficient and the
associated p-value.

To identify independent variants, we performed LD clumping on
those variants with positive Z scores using BBJ1K and 1KG EAS as
reference populations, with the following PLINK parameters: p1 = 1,
p2 = 1, r2 = 0.01, kb=2000. Jomon-related variants (total 132 variants)
weredefined as those that are independent, not located in theHLA loci,
and satisfy a genome-wide significance (P < 5.0 × 10−8). We calculated
the FST value for the Jomon-related variants among the EAS popula-
tions in 1KGusingHudson’s FST implemented inPLINK266. Variantswith
p-values greater than 0.05 were classified as non-Jomon-related. We
then identified 132 non-Jomon-related variants matching allele fre-
quencies of the Jomon-related variants using a nearest neighbor
matching method, contrasting the Jomon-related and non-Jomon-
related variants by examining their frequency differences between the
Japanese and continental East Asian populations, as well as their hap-
lotypic lengths with LD greater than 0.8. The enrichment of selection
signals in the Jomon-related variants was tested based on Z-scores of
SDSs estimated in a previous study17. The sum of squared values of
rank-based normalized Z-scores were compared to a chi-squared dis-
tribution with the degree of freedom equal to the number of available
variants.

Stratified LD score regression was applied to the meta-analyzed
summary data of the Jomon proportion, which estimated cell group
enrichment with the recommended baseline LDmodel67. For LD score
regression, we adopted theHapMap3 SNPs, excluding thosewithin the
HLA region, and used pre-computed LD scores among the 1KG EAS
populations, which were obtained from the LDSC software website68.
We investigated the pleiotropic effects of Jomon-related variants using
BioBank Japan PheWeb for the Japanese population (https://pheweb.
jp/) and Open Targets Genetics for Europeans (https://genetics.
opentargets.org/). We also evaluated eQTL effects of the variants
using GTEx (https://gtexportal.org/home/).

Validation with independent Japanese cohorts
As independent replication cohorts, we used the Nagahama cohort
study and the second BBJ cohort (BBJ-2nd). The Nagahama cohort
study is a community-based and recruited participants from Naga-
hama City, Shiga Prefecture, Japan42. The cohort was genotyped using
six different genotyping arrays. We then selected two platforms
(Nagahama A; Illumina Human610-Quad Beadchip, and Nagahama B;
Illumina HumanOmni2.5-4v1 Beadchip) with a large number of sam-
ples. We excluded individuals with low call rates, high heterozygosity
rates, closely related individuals, and PCA outliers from the EAS
populations (n = 1591 in Nagahama A and n = 1444 in Nagahama B)69.
We also excluded variants with (i) call rate <0.98, (ii)MAF < 1%, and (iii)
HWE P < 1.0 × 10−6. Genotype data were phased by Eagle v2 and
imputed with the reference panel from the 1000 Genomes Project
Phase3v5 and BBJ1K using Mimimac3. As described above, we con-
verted the high-quality imputed dosage data to genotype data and
merged them with ancient genome data. We obtained

1,982,989 shared variants inNagahamaA and2,109,225 shared variants
in Nagahama B.

The BBJ-2nd is an additional cohort of independent participants
from the first cohort of BBJ. The BBJ-2nd consisted of ~80,000 indi-
viduals collected between 2013 and 2018. The subjects were geno-
typed using an Illumina Asian Screening Array chip. As in the first
cohort, we applied stringent QC filters to both participants and SNPs
as described elsewhere70,71. Briefly, we excluded individuals with a
low call rate (<0.98), closely related individuals (King’s kinship
index ≥0.0884), and outliers from the EAS cluster in the PCAwith the
samples of the HapMap3 project (n = 72,695). We also excluded
variants with call rate <0.99, minor allele count <5, HWE P < 1.0 × 10−10

and >0.05 of allele frequency difference when compared with the
Japanese WGS reference panels. The genotype data was phased by
SHAPEIT (version 4.2.1) and imputed with the reference panel from
the 1000 Genomes Project Phase3v5 and BBJ1K using Mimimac4
(version 1.0.1). Converting the high-quality imputed dosage data
(Rsq ≥0.7) to genotype data, we merged the ancient genome data to
obtain 1,940,657 shared variants.

We estimated proportions of Jomon ancestry for individuals in
each cohort by using qpAdm in the sameway as the first cohort of BBJ.
We derived a score for predicting Jomon ancestry based on 132 inde-
pendent Jomon-related variants by using the PLINK2 score option,
which is defined as Jomon component prediction score. After regres-
sing the Jomon proportion out with 10 PCs as covariates, we estimated
the variance explained by the scaled Jomon component prediction
score using Pearson’s correlation. In each cohort, principal compo-
nents were computed using the projection method on the PCs of the
first cohort of BBJ. To evaluate the power of the Jomon component
prediction score,weemployed a clumping and thresholding approach.
We built the Jomon component score for BBJ-2nd individuals using
genetic variants meeting the following p-value thresholds: 5 × 10−8,
5 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 0.01, 0.05, 0.1. To assess the
proportion of variance explained by the Jomon component score, we
calculated the adjusted R2 from a full model that included the score
and all covariates, compared to a null model without the score.

Replication analysis using East Asians individuals in UK Biobank
As an independent source of an East Asian (EAS) population, we
focused on EAS individuals from UK Biobank (UKB), which is a
population-based cohort that recruited 500,000 individuals between
40 and 69 years old from across the United Kingdom72. EAS individuals
were extracted by visual inspection on the PCA plots including 1KG
populations as the reference for EAS ancestry (n = 2286; Supplemen-
tary Fig. 11).UKBwasgenotypedwith either theAppliedBiosystemsUK
BiLEVE Axiom Array or the Applied Biosystems UKB Axiom Array. The
genotypes were imputed using the Haplotype Reference Consortium,
UK10K, and the 1000 Genomes Phase 3 reference panel using
IMPUTE472. The detailed characteristics of the cohort have been
described elsewhere72. For UKB EAS individuals, we converted the
variants with INFO score ≥0.8 to genotype data and obtained
3,610,183 sites shared with ancient genome data.

The genetic affinity between the Jomon and UKB EAS or between
the Jomon and each of different ethnic background groups within UKB
EAS was tested using f4-statistics with the form of f4(Mbuti, Jomon;
Han, X). The breakdown of self-reported ethnic backgrounds at the
participants’ initial visit (Data-Field 21000) is as follows: Data-coding 1
forWhite (n = 1), Data-coding 1001 for British (n = 1), Data-coding 2003
for White and Asian (n = 2), Data-coding 2004 for Any other mixed
background (n = 3), Data-coding 3 for Asian or Asian British (n = 2),
Data-coding 3004 for Any other Asian background (n = 300), Data-
coding 5 for Chinese (n = 1375), and Data-coding 6 for Other
EG (n = 541).

We estimated the Jomonproportion for individuals in each cohort
by using qpAdm. In cases where individuals did not support the
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tripartite ancestry structure, we applied the same procedure used for
BBJ to identify a plausible model with a two-way admixture, where
Jomon served as one of the source ancestors. Jomon component pre-
diction scores based on 132 independent Jomon-related variants were
calculated using PLINK2.

To assess the association between Jomon ancestry andBMI inUKB
EAS, we computed the mean BMI for participants with measurements
taken two or three times. The association tests were adjusted for sex,
age, age squared, ascertainment center information, batch informa-
tion, and ethnic backgrounds. This approach was also applied to EG5
(i.e., self-reported Chinese, n = 1375) and 6 (i.e., self-reported Other
ethnic group, n = 541) with the same covariates, except for ethnic
backgrounds.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics from the genome-wide association analysis for
Jomon ancestry have been deposited in the National Bioscience
Database Center (NBDC) Human Database (https://humandbs.dbcls.
jp/en/) under accession code hum0197 (https://humandbs.dbcls.jp/
en/hum0197-latest). The genotype data of BBJ are available from the
NBDC Human Database (research ID: hum0014 and hum0311). The
genotype data of the Nagahama cohort study are available from the
NBDC Human Database (research ID: hum0012). UKB analysis was
conducted using application number 47821 (https://www.ukbiobank.
ac.uk/). All ancient genomic data used in this study were previously
compiled14.

Code availability
We used publicly available software for analysis. The software used is
described in the “Methods” section.
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