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ABSTRACT
In this study, we carried out equilibrium molecular dynamics (EMD) simulations of the liquid–liquid (LL) interface between two different
Lennard-Jones components with varying miscibility, where we examined the relation between the interfacial tension and the free energy
to completely isolate the two liquids using both a mechanical and thermodynamic approach. Using the mechanical approach, we obtained
a stress distribution around a quasi-one-dimensional EMD system with a flat LL interface. From the stress distribution, we calculated the
LL interfacial tension based on Bakker’s equation, which uses the stress anisotropy around the interface, and measured how it varied with
miscibility. The second approach uses thermodynamic integration by enforcing quasi-static isolation of the two liquids to calculate the free
energy. This uses the same EMD systems as the mechanical approach, with both extended dry-surface and phantom-wall (PW) schemes
applied. When the two components were immiscible, the mechanical interfacial tension and isolation free energy were in good agreement.
When the components were miscible, the values were significantly different. From the result of PW for the case of completely mixed liquids,
the difference was attributed to the additional free energy required to separate the binary mixture into single components against the osmotic
pressure prior to the complete detachment of the two components. This provides a new route to obtain the free energy of mixing.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0238862

I. INTRODUCTION

When two immiscible liquids, such as water and oil, coex-
ist, an interface is typically formed between them, referred to as a
liquid–liquid (LL) interface, where a LL interfacial tension arises.
Such LL interface can be found in emulsions, which are ubiquitous
in our daily lives, e.g., food, drink, and cosmetics, so measuring the
LL interfacial free energy and/or tension is important to control the
properties of the mixture.

From a microscopic point of view, Kirkwood and Buff1,2 for-
mulated expressions for the chemical potentials of the components
of gas mixtures and liquid solutions based on statistical mechanics,
and they also provided a general theoretical framework to describe
surface tension.3 Related to this point, with respect to a liquid–vapor
(LV) or liquid–gas (LG) interface, Bakker’s equation,4 based on
macroscopic thermodynamics, was known before the formulation
from the statistical mechanics of Kirkwood and Buff. This equa-
tion relates the macroscopic LV or LG interfacial tension to the
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anisotropy of the microscopic local stress near the interface. For a
flat LV interface normal to the x-axis, Bakker’s equation is written as

γLV = ∫

xblk
L

xblk
V

[τyy(x) − τxx]dx = ∫
xblk

L

xblk
V

τyy(x)dx − ∫
xblk

L

xblk
V

τxxdx, (1)

where γLV is the LV interfacial tension, and τyy (= τzz) and τxx are
the diagonal components of the stress tensor tangential and nor-
mal to the interface, respectively. From the local-force balance in
the direction normal to the interface, at equilibrium, τxx is con-
stant over the entire region and equal to the isotropic pressure in
the bulk with its sign inverted. By integrating the stress difference
τyy(x) − τxx existing only around the interface, i.e., by taking xblk

L

and xblk
V in Eq. (1) as the bulk positions of the liquid and gas phases,

respectively, the LV interfacial tension γLV is obtained.
At present, molecular dynamics (MD) simulation is a power-

ful tool to investigate LV or LG interfaces as well as LL mixtures
composed of various kinds of molecular pairs in silico. A quasi-one-
dimensional (1D) MD system can be easily simulated, e.g., one with
LV coexistence can be constructed by confining a single molecu-
lar component in a constant-volume simulation cell with periodic
boundary conditions (PBCs) at a temperature between the triple
point and the critical point. In such an MD system, the two inte-
grals in the right-hand-side of Bakker’s Eq. (1) can be obtained,5 and
thus, Eq. (1) is widely used to calculate the surface tension as a stan-
dard approach in MD. This is partly because only the integral of each
principal stress component in the whole system is used, which can
be easily calculated in such a quasi-1D system.

Regarding the LL interface, in the early stage of MD develop-
ment, Hayoun et al.6 simulated a quasi-1D system with an interface
between two Lennard-Jones (LJ) liquids and showed the density
and pressure distribution, and Benjamin7 wrote a review article of
MD studies regarding the structure and dynamics at the LL inter-
face. At present, the LL interfacial tension is also calculated using
the integrated form of Bakker’s equation similar to Eq. (1) as a
definition.8 Furthermore, the authors have successfully extended
Bakker’s Eq. (1) to flat solid–liquid (SL) and solid–vapor (SV) inter-
faces. In this framework, through a careful choice of the SL and SV
interface positions based on a mechanical force balance, the micro-
scopic interpretation of Young’s equation was clarified as the force
balance exerted on the fluid particles in a finite region surround-
ing the contact line. It should be noted that the microscopic stress
calculated by the method of planes (MoPs)9 was evaluated only by
including the interaction forces between fluid particles, while the
force from the solid particles on the fluid particles was treated as
an external force. Such a treatment of interfacial tensions, includ-
ing surface tension, based on a mechanical force balance is called the
mechanical route.10–14

In addition to the mechanical route, the SL and SV interfacial
tensions have been calculated as the free energy per unit area of the
interface based on thermodynamic integration methods.13,15–17 In
this thermodynamic route, the solid–fluid (SF) work of adhesion was
calculated by either quasi-statically pushing the liquid away from the
solid using a virtual wall that interacted only with the fluid (called
the phantom-wall method) or by gradually reducing the SF interac-
tion strength until the solid and fluid no longer interacted (called
the dry-surface method). More concretely, the quasi-static SL isola-
tion process was carried out while keeping constant the number of

particles N, pressure p, and temperature T, i.e., under constant NpT
conditions, and the SL work of adhesion WSL was obtained from the
change in Gibbs free energy G of the system given by

WSL ≡
ΔG
A
= γS0 + γL0 − γSL, (2)

where A is the interfacial area and γ is the interfacial free energy per
unit area with corresponding interfaces denoted by the subscripts
(S: solid, L: liquid, and 0: depletion layer). Note that ΔG excluded
the work exerted on the environment.13 The solid–vapor work of
adhesion WSV was also evaluated by similar schemes. As a result,
it was shown that the mechanically obtained SL and SV interfacial
tensions and thermodynamically obtained works of adhesion agreed
well for a LJ fluid on a simple crystal surface.

In this study, we investigate the possible extension of the
mechanical and thermodynamic routes to the LL interface with a
focus on the following points: (1) whether Bakker’s equation as
a mechanical route can be extended to the LL interface, and (2)
whether the mechanical route corresponds to the thermodynamic
route for the LL interface. Related to the second point, we tested
two methods for the thermodynamic route to validate the results. In
addition, we show that one of the thermodynamic methods can pro-
vide a clear insight into the isolation free energy, i.e., the free energy
needed to separate the mixture into single components—which
includes the free energy of mixing and the change in interfacial free
energy. This also gives access to the osmotic pressure of the liquid
mixtures.

II. METHOD
A. Simulation setup

All the simulations were carried out using an in-house code,
which was used in our previous work and thoroughly validated for
cases of LJ fluids with interfaces, including those with a contact
line.13,17–23 Figure 1 shows the quasi-1D equilibrium MD (EMD)
system studied. Two kinds of LJ particles, denoted by α and β, having
the same mass of m = 6.634 × 10−26 kg, equal to the mass of an argon
atom of 40 amu, were confined between two walls on the left and
right ends, both parallel to the yz-plane shown in light brown. The
numbers of particles α and β were both set equal to 2000. Although
these LJ particles can also form a vapor phase, we write them as
“liquid particles” for clarity in the following as we are only consider-
ing liquids. The interaction potentials between the same components
ϕαα and ϕββ were expressed as

ϕαα(rij) = ϕββ(rij) = 4ε
⎡
⎢
⎢
⎢
⎢
⎣

(
σ
rij
)

12

− (
σ
rij
)

6⎤
⎥
⎥
⎥
⎥
⎦

, (3)

where rij denotes the distance between particles i and j of the same
component α or β, and σ and ε were the LJ length and energy poten-
tial parameters, which we set as σ = 0.34 nm and ε = 1.67 × 10−21 J.
The interaction potential between different components ϕαβ(rij)was
expressed by multiplying the interaction potential in Eq. (3) by η as
follows:

ϕαβ(rij) = ηϕαα(rij), (4)

where η was set between 0.01 and 1 as a variable parameter.
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FIG. 1. (a) Setup of the equilibrium sim-
ulation system with a liquid–liquid inter-
face controlled by a miscibility parameter
η. A pressure control piston (PC) and a
semipermeable phantom wall (PW) were
located on each end of the system in the
x-direction (left and right). (b) Side snap-
shots of the equilibrium systems for the
free-energy calculation by the thermody-
namic integration using the (i) extended
dry surface (DS) and (ii) extended PW
methods. For the extended DS method
(i), the miscibility parameter η was varied
while keeping the PWs at xpw

1 and −xpw
1

far from the liquid; thus, the PWs as well
as the PCs are shown only on the top
panel of (i). For the PW method (ii), the
PW positions xpw and −xpw were varied
while keeping η unchanged.

Periodic boundary conditions were adopted in y- and
z-directions, and the cell size in these directions, Ly and Lz , were both
4 nm. In the following, the system yz cross sectional area is denoted
A = LyLz . In addition, we located a pressure control (PC) wall and a
semipermeable phantom wall (PW) on each end of the system in the
x-direction (left and right), all of which were parallel to the yz-plane
and interacted with the liquid particles as a unique function of the
distance given by

ϕfw(x
′
i) =

4
5

πεfwρsx′ 2
i (

σfw

x′i
)

12
, (5)

where x′i is the distance between particle i at xi and correspond-
ing wall. This potential field corresponds to a mean potential field
formed by a single wall layer of uniformly distributed solid parti-
cles with an area number density ρs = (3.61)2 nm−2, which interact
with the liquid particles through the LJ potential only with the repul-
sive term [Eq. (3) without (σ/rij)

6 in the RHS] with the energy and
length parameters being εfw = 1.29 × 10−21 J and σfw = 0.345 nm,
respectively. The presented results are not sensitive to the choice

of parameter values, which are set the same as in our previous
studies,13,17 as long as the interaction is repulsive and short-ranged.

For the PCs on the left and right at xpc
left and xpc

right, respectively,
shown in light brown in Fig. 1(a), we used

ϕliquid−pc(x
′
i) = ϕfw(x

′
i),

x′i = xi − xpc
left, x′i = xpc

right − xi (i ∈ α, β).
(6)

By adjusting the positions xpc
left and xpc

right of the walls as pistons, the
system pressure was maintained at a constant value of pset ≈ 1 MPa.

On the other hand, for the PWs on the left and right at xpw
α and

xpw
β , respectively, we applied

ϕliquid−pwα(x
′
i) = ϕfw(x

′
i), x′i = xpw

α − xi (i ∈ α) (7)

and

ϕliquid−pwβ(x
′
i) = ϕfw(x

′
i), x′i = xi − xpw

β (i ∈ β) (8)

with setting

xpw
α = xpw, and xpw

β = −xpw. (9)
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With this setting, the PWs interacted only with α or β and worked as
semipermeable membranes located symmetric to the yz-plane.

The system temperature T was controlled at 85 K by apply-
ing a velocity rescaling thermostat to the liquid particles located at
less than 1.5 nm from the potential walls, only for the velocity com-
ponents in the y- and z-directions. These thermostat regions were
sufficiently far away from the interface, and no direct thermostating
was applied to the region near the interface so that this thermostat
had no effects on the presented results.

For the calculation of the stress distribution as a mechanical
route and for the dry surface (DS) method as a thermodynamic
route shown in Fig. 1(b-i), the symmetric PW position was fixed
at xpw

(= xpw
α = −xpw

β ) = 8 nm, at which the PWs were sufficiently
far away from the liquid so that they did not interact with the liq-
uids. We denote this value of xpw

= 8 nm as xpw
1 hereafter. With

this setting, a quasi-1D system under constant NpT was obtained
as an equilibrium state for each η value. The two liquids were com-
pletely mixed without interface at η = 1 because both liquids are
identical. By decreasing η, the two liquids were separated at η = 0.85
and formed a flat LL interface, and at η = 0.01, the two liquids were
isolated with an empty region between two liquids. This value of
η = 0.01 is denoted as η0 hereafter.

For the extended phantom wall (PW) method in Fig. 1(b-ii) as
another thermodynamic route described below, the PW position xpw

was changed while keeping η unchanged. With the decrease of xpw,
the two liquids were separated by the semipermeable PWs, and they
were isolated at xpw

= 0.2 nm in this case. This value of xpw
= 0.2 nm

is denoted as xpw
0 hereafter.

B. Mechanical route
Here, we describe how Bakker’s equation is used to calculate the

LL interfacial tension from the stress distribution using a mechanical
route. Equation (1) extended to the LL interface can be written as

γαβ = ∫
xblk

β

xblk
α

[τyy(x) − τxx]dx, (10)

where γαβ is the LL interfacial tension, and xblk
α and xblk

β (> xblk
α ) are

the bulk positions of the liquid phases α and β, respectively, where
the stress is isotropic.

We chose to compute explicitly the stress distribution rather
than just the stress integral, as is usually done,8,24 because the
stress distribution provides more insight into the molecular ori-
gin of surface tension.25–27 Note that, while the stress integral is
always well-defined and can be computed using standard MD pack-
ages such as LAMMPS28 and GROMACS,29 the local stress lacks
a unique definition. Only certain approaches, such as the volume
average (VA) method or the method of planes (MoPs), ensure that
τxx is constant over the entire region.9,13,18,30 As detailed below, we
used the VA method implemented in our in-house code in this
work. We emphasize that, regardless of the local stress definition, the
stress integral is always the same24 and provides the same interfacial
tension as obtained through the stress distribution.

In general, the stress tensor τ is expressed by the sum of a
kinetic term τkin and an interaction term τint as

τ = τkin
+ τint. (11)

In this study, the liquid was composed of two monoatomic com-
ponents, α and β, and we included all contributions from the two
components in each term. At first, the kinetic energy term τkin can
be written as

τkin
= τkin,α

+ τkin,β, (12)

where the superscript “kin,α,” for instance, denotes the contribu-
tion from α particles to the kinetic term. On the other hand, the
interaction term τint is written as

τint
= τint,αα

+ τint,ββ
+ τint,αβ, (13)

where the superscript “int,αβ” denotes, for instance, the contribu-
tion from the intermolecular interaction between α and β particles
to the interaction term. We verified that the stress definition with
Eqs. (11)–(13) satisfied the local mechanical balance

∇ ⋅ τ = 0 (14)

in equilibrium systems at an arbitrary point in the absence of the
external field,30 i.e., except near the PCs and PWs. In practice,
we calculated the stress distribution by the volume average (VA)
method18,30 and checked if

τxx = const (15)

was satisfied in the present quasi-1D system.
We applied the VA approach for local flat regions with a thick-

ness δx and a volume VCV of Aδx, where the superscript “CV” stands
for “control volume.” The two terms of the kinetic contribution in
the RHS of Eq. (12) were expressed by

τkin,ξ
= −

1
VCV ⟨

Nξ

∑
i∈ξ

miviviϑi⟩, (ξ = α, β), (16)

where ri and vi are the position and velocity vectors of ith ξ particle,
and ϑi is a function that is one if the particle is in the local volume or
zero otherwise, and the summation is taken over all Nξ particles in
the system. The angle brackets denote the ensemble average; in prac-
tice, this ensemble average is usually substituted by the time average
in steady-state MD systems, including EMD ones,21,23 and a mov-
ing time average in non-equilibrium MD.31 On the other hand, for
a simple two-body interaction between the particles, the three terms
of the interaction contribution in the RHS of Eq. (13) are separated
into the following:

τint,ξζ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
1

VCV ⟨

Nξ−1

∑

Nξ

∑
i,j(>i) ∈ ξ

wCV
ij rij ⊗ fij⟩, (ξ = ζ = α, β),

−
1

VCV ⟨

Nξ

∑
i∈ξ

Nζ

∑
j∈ζ

wCV
ij rij ⊗ fij⟩, (ξ = α, ζ = β),

(17)

where rij = rj − ri and fij are the relative position vector and force
exerted from particle i to j, whereas wCV

ij denotes the weighting
function given as the length fraction of the straight line segment
connecting particle i and j in the CV. A mathematically proper
expression for the Cartesian coordinate system is given in Ref. 30.
We obtained the stress distribution with a CV thickness δx of
1.24 × 10−1 nm and time-averaging over 200 ns.
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Indeed, as naturally expected from equilibrium momentum
balance, Eq. (15) was satisfied for all systems with varying η values,
and based on this result, the interfacial tension γαβ was obtained by
Eq. (10) using the stress distributions obtained by the VA approach.

C. Thermodynamic route
As a thermodynamic approach, Leroy et al.10,11,32 proposed

to calculate the SL and SV interfacial tensions using the thermo-
dynamic integration (TI) method. Generally, TI is a method to
calculate the free energy difference between two different equilib-
rium systems by connecting them by a thermodynamically reversible
quasi-static route.33–35 For example, one introduces a coupling para-
meter λ into the Hamiltonian of the system H(Γ, λ), with the phase
variable Γ composed of the positions and momenta of all constituent
particles. Let G(λ) be the Gibbs free energy of the system as a func-
tion of λ. Then, the difference between a target system at λ = λ1 and
a reference system at λ = λ0 is obtained as follows:

G(λ1) −G(λ0) = ∫

λ1

λ0

⟨
∂H(λ′)
∂λ′

⟩dλ′, (18)

where ⟨∂ H(λ′)
∂λ′ ⟩ denotes the equilibrium ensemble average of

∂ H(Γ,λ′)
∂λ′ in the phase space of Γ, which is substituted by the time

average in the EMD systems in this study.36 By embedding λ into the
Hamiltonian in the right-hand side (RHS) so that H(Γ, λ) can ana-
lytically be differentiable by λ, the free energy difference in Eq. (18)
can be calculated by numerically integrating ⟨∂ H

∂λ′ ⟩ obtained in each
equilibrium system with a discrete λ′ value between λ0 and λ1.

Two implementations of the TI are used: the phantom wall
(PW) method10,32 and the dry surface (DS) method.11 This provides
a comparison of the two approaches as well as ensuring the TI is
performed consistently. Conceptually, the PW works like a pair of
nets pulled through the liquid, each catching only one particle type
to separate the two liquids. Meanwhile, the DS slowly changes the
interaction of the two liquids, encouraging them to separate.

In the PW method, a wall is introduced that interacts only with
the liquid particles through a short-range repulsive potential func-
tion. This is applied to a quasi-1D system with a flat SL interface.
The PW is set parallel to the interface, and the liquid is expelled by
quasi-statically moving PW starting from the solid side and moving
to the liquid side under constant NpT conditions. In this method,
the PW position is linked with the coupling parameter λ in the sys-
tem Hamiltonian, and ∂ H

∂λ′ corresponds to the force exerted by the
PW on the system, i.e., the quasi-static work exerted on the sys-
tem is calculated by the integral in Eq. (18). This thermodynamic
minimum work corresponds to the free energy difference between
a system with a target SL interface at λ = λ1 and a reference system
with a solid surface exposed to vacuum and a PW-liquid interface
achieved at λ = λ0.16,37

On the other hand, for the DS method, the parameter λ is
embedded into the SL interaction potential energy and the free
energy difference of the target system relative to the reference sys-
tem with a “dry” solid surface, in which the SL interaction is very
weak or almost repulsive.13,15,19 In this method, ⟨∂ H

∂λ′ ⟩ in Eq. (18)
corresponds to the total SL interaction energy of the system.

Although the two methods give similar results, the DS method
allows parameterization of the SL interfacial tension as a function

of the liquid interaction parameter with a lower computational cost
than the PW method.13,15 Indeed, with the PW method, one needs
to carry out a SL stripping process (by moving the PW to quasi-
statically expel the liquid from the solid as mentioned above) for
each SL interaction parameter; however, the PW method is simple
and, therefore, applicable to charged systems, including long-range
interactions. In addition, the PW method gives a direct intuitive link
with the thermodynamic minimum work.

In this study, we used the DS and PW methods, both extended
for the liquid–liquid interface. In both methods, we evaluated the
thermodynamic minimum work needed to change from a target sys-
tem to a reference system with α and β completely isolated without
mixing, where the contribution to the free energy difference van-
ished. Note that the implementations of the reference systems were
different for the DS and PW methods as in Figs. 1(b-i) and 1(b-ii);
however, they are assumed equivalent from a thermodynamic point
of view.

The details of the two methods are described in Appendix A.
The basic point is that the thermodynamic equilibrium state of the
present NpT constant system is determined by giving two variables
of miscibility η and the phantom wall position xpw, which corre-
spond to the positions of the symmetric semipermeable PWs at
±xpw, and we change only one as the coupling parameter for the
TI while keeping the other unchanged. Note that the average piston
positions ⟨xpc

left⟩ and ⟨xpc
right⟩ are dependent variables determined by

(η, xpw
) through the control pressure p. In the DS method, we set the

miscibility parameter η in Eq. (4) as the coupling parameter for the
TI while keeping xpw

= xpw
1 unchanged and reproduced the reference

system by setting η→ 0 and keeping η positive as in the original DS
method.11 In the present case, we set the system at η = η0 (= 0.01)
as the reference system with completely isolated liquids as shown in
Fig. 1(b-i). The value of xpw

1 was set large enough that the PWs were
located far away from the liquid (behind the pressure control pis-
tons) and did not interact with the liquid particles, i.e., the PWs had
no contribution to the system Hamiltonian for the present DS pro-
cedure. Then, based on Eq. (18), the free energy difference between
the target system at (η, xpw

) = (η, xpw
1 ) and the reference system at

(η0, xpw
1 ) is calculated by

G(η, xpw
1 ) −G(η0, xpw

1 ) = ∫

η

η0

⟨
∂H(η′, xpw

1 )

∂η′
⟩dη′, (19)

where the integrand ⟨∂ H(η′ ,xpw
1 )

∂η′ ⟩ in the RHS can be easily obtained
in the MD system as in the original DS procedure. According to
the second law of thermodynamics, this corresponds to the sum
of the minimum work needed for the change from the target sys-
tem to the reference system and the quasi-static work exerted on
the pressure control pistons as the environment under constant
NpT. By separating the work on the PCs per unit area given by
ΔWpc[(η, xpw

1 )→ (η0, xpw
1 )] [see Eq. (A2) for the definition], we

define WDS
iso (η) as the “work of isolation” calculated by the DS

method as

WDS
iso (η) ≡ −

G(η, xpw
1 ) −G(η0, xpw

1 )

A
− ΔWpc[(η, xpw

1 )→ (η0, xpw
1 )].
(20)

In this study, we prepared multiple equilibrium systems with
different miscibility parameters η ∈ [0.01, 1] and calculated the time
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average of the average LL potential energy over 20 ns for each
equilibrium system to numerically integrate the RHS of Eq. (19)
[see Eq. (A7) in Appendix A]. With this procedure, the depen-
dence of WDS

iso (η) on η was clearly observed through the numerical
integration with respect to η.

On the other hand, in the PW method, we used xpw as the
coupling parameter while keeping η unchanged and reproduced the
reference system by pushing the PWs as in Fig. 1(b-ii), i.e., changing
xpw from xpw

1 to xpw
0 so that the two liquids were completely isolated.

In this case, the free energy difference of G(η, xpw
) is given by

G(η, xpw
1 ) −G(η, xpw

0 ) = ∫

xpw
1

xpw
0

⟨
∂H(η, xpw′

)

∂xpw′ ⟩dxpw′. (21)

It is obvious from the PW-liquid potential functions in Eqs. (7)–(9)
that the Hamiltonian derivative is reduced to the forces on the
PWs as

⟨
∂H(η, xpw

)

∂xpw ⟩ = −⟨Fliquid−pwα(η, xpw
)⟩ + ⟨Fliquid−pwβ(η, xpw

)⟩,

(22)

where ⟨Fliquid−pwα(η, xpw
)⟩ and ⟨Fliquid−pwβ(η, xpw

)⟩ denote the
forces on the phantom-walls α and β from the corresponding liquids,
respectively. Note that

⟨Fliquid−pwα⟩ ≈ −⟨Fliquid−pwβ⟩ ≥ 0 (23)

for the forces because of the repulsive setting. Hence, the RHS of
Eq. (21) corresponds to the work exerted by the two PWs (see
Appendix A for details). Similar to Eq. (20), we define WPW

iso (η) as
the work of isolation calculated by the PW method as

WPW
iso (η) ≡ −

G(η, xpw
1 ) −G(η, xpw

0 )

A
− ΔWpc[(η, xpw

1 )→ (η, xpw
0 )].

(24)
Note that the PW position xpw was varied while keeping η constant.
In practice, we calculated WPW

iso (η) for several discrete η values. This
was in contrast to the calculation of WDS

iso (η), which was calculated
through the numerical integration with respect to η.

We compared WPW
iso (η), WDS

iso (η), and the interfacial tension
γαβ(η) for various η values. We validated that the two TI approaches
were carried out quasi-statically by tracing equilibrium points for

FIG. 2. (a) Distributions of the diago-
nal stress components τyy (black) and
τxx (green) calculated by the VA and
the densities ρα (blue) and ρβ (red) of
α and β components for the systems at
η = 0.01, 0.4, 0.8, and 1. Enlarged snap-
shots of the systems around the interface
are also shown. (b) Interfacial tension
γαβ calculated from the stress distri-
bution by Eq. (10) as the mechanical
route. The value of 2γLV obtained in an
independent system is also displayed.
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both reversible paths through the comparison between WPW
iso (η) and

WDS
iso (η). This will be described in Sec. III B with Fig. 3.

III. RESULTS AND DISCUSSION
A. Stress distribution and resulting interfacial tension

Figure 2(a) shows the distributions of the diagonal stress com-
ponents τyy and τxx calculated by the VA and the density distribu-
tions of each component for the systems at η = 0.01, 0.4, 0.8, and 1.
Enlarged snapshots of the systems around the interface are shown
above the distributions. As observed in the density distributions and
snapshots, two liquids completely isolated at η = 0.01 were gradually
mixed with the increase of η, and one component dissolved into the
other at η = 0.8 where, for instance, ρα was non-zero even at the right
boundary away from the interface. The two liquids were completely
mixed at η = 1, and the density was homogeneous without form-
ing an interface because the two particles were identical. Regarding
the stress distributions, by using the stress definition described in
Sec. II B, the uniformity of τxx in Eq. (15), which was consistent with
the mechanical equilibrium condition in the direction normal to the
interface, was satisfied for all η values even at the interfaces with a
steep spatial change in the densities. In addition, the constant value
τxx was equal to τyy in the bulk regions away from the interface, i.e.,
the stress isotropy was satisfied there. The isotropic value τxx(= τyy)

in bulk is negative because it is equal to the bulk pressure with its
sign reverted. Based on these results, we obtained the LL interfa-
cial tension γαβ(η) by Eq. (10) as a function of η using the present
definition. This corresponds to the integral for the regions filled with
light red in Fig. 2(a).

Two distinct regions with τyy > τxx separated at the boundary
of two liquids existed for η = 0.01(= η0) [Fig. 2(a-i)], where the two
liquids were isolated and the sum of the densities ρα + ρβ was almost
zero at the boundary. The interface is equivalent to the system with
two interfaces between the liquid (L) and vapor (V), each with a
surface tension of γLV, i.e.,

γαβ(η0) ≈ 2γLV. (25)

This can also be intuitively understood from the distribution of τyy
with two peaks displayed in Fig. 2(a-i). Indeed, we independently
performed an EMD simulation of a quasi-1D single component LV
system at coexistence with two flat LV interfaces at the same tem-
perature and calculated the value of γLV

13 and confirmed that the
resulting 2γLV was consistent with the value of γαβ(η0) at 22.96
± 0.03 × 10−3 N/m in the present study as indicated in Eq. (25).
Note that the transverse stress τyy reached very large positive values
∼ +107 Pa, as estimated by Rowlinson and Widom,38 in comparison
to the bulk value around −106 Pa.

The two isolated peaks of τyy were merged with the increase of
η, and the maximum values of τyy became smaller; thus, the resulting
integral was also reduced [Figs. 2(a-ii) and 2(a-iii)]. At η = 1, the two
stress components τyy and τxx were equal, and the corresponding
integral in Eq. (10) was zero [Fig. 2(a-iv)]. This physically means that
no interface exists and the mechanical interfacial tension satisfies

γαβ(η = 1) = 0. (26)

In principle, the LL interfacial tension γαβ ranges between 0 and
2γLV, corresponding to completely miscible and immiscible cases,
respectively. Figure 2(b) shows γαβ(η) calculated by Eq. (10) for each
value of η. As expected, γαβ(η) monotonically decreased with the
increase of η, and it reached zero at around η = 0.85. Above this
threshold value, the two liquids were mixed, and no LL interface was
formed, as shown in Fig. 1(b-i). Note that this threshold value of η,
above which the two components are completely mixed, is similar to
the critical point for a single component system. However, different
from the critical point, this threshold value of η depends on the tem-
perature. We used −[γαβ(η) − 2γLV] as the difference from γαβ(η0)

indicated in the right vertical axis for the comparison with the works
of isolation below.

B. Comparison of interfacial tension and works
of isolation

We compared the mechanical interfacial tension γαβ(η) and
the works for isolation WDS

iso (η) and WPW
iso (η) obtained by the DS

FIG. 3. Comparison between the rel-
ative interfacial tension −(γαβ − 2γLV)
obtained with the mechanical route and
work of isolation W iso for various η. Error
bars for WDS

iso are not shown for bet-
ter visualization here (see Fig. 5). Side
snapshots in Fig. 1(b) with the corre-
sponding (η, xpw) value are appended
for some systems.
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and extended-PW methods, respectively, for various η. Prior to that,
we set the standard basis for the comparison through the differ-
ence of γαβ(η) and W iso(η), considering two representative cases of
η = η0 and η = 1, where the values could be evaluated from the phys-
ical meanings. As shown in Fig. 2, γαβ(η0) = 2γLV and γαβ(1) = 0 in
Eqs. (25) and (26), respectively, hold for γαβ(η). Meanwhile, for the
works of isolation, it is obvious that

WDS
iso (η0) = 0, and WPW

iso (η0) = 0, (27)

where the second equality is because no work is given to the sys-
tem for further separation of the two isolated liquids by the PWs.
On the other hand, for the case of η = 1, where α and β are iden-
tical, a certain positive work WPW

iso (η = 1) is needed to isolate α
and β from this mixed state, although the correspondence with the
mechanical interfacial tension γαβ(1) is not clear. Considering these
points, we compared −[γαβ(η) − 2γLV] using the values obtained by
the mechanical route with W iso(η) obtained by the two thermo-
dynamic routes. Note that the value 2γLV corresponds to the work
per unit area required to divide a single component liquid into two
isolated parts with a depletion region equivalent to the gas phase
between them as in the reference system. In addition, note that the
unit N/m for the mechanical route is equivalent to the unit J/m2 for
the thermodynamic route.

Figure 3 displays the comparison among relative interfacial
tension −[γαβ(η) − 2γLV] and the works of isolation WDS

iso (η) and
WPW

iso (η) as a function of the miscibility parameter η. Note that the
error bars for WDS

iso are not shown in this figure for better visu-
alization; however, they are relatively small as shown in Fig. 5 in
Appendix B. We start from the comparison between WDS

iso (η) and
WPW

iso (η). As described in Subsection II C, WDS
iso (η) was obtained

as a quasi-smooth function by the extended-DS method. On the
other hand, WPW

iso (η) was obtained for discrete η values. Never-
theless, it was shown that the two values WDS

iso (η) and WPW
iso (η)

gave the same result, although the thermodynamic integration paths
were toward equivalent but different reference systems at (η, xpw

)

= (η0, xpw
1 ) and (η, xpw

0 ), respectively. This match also indicates that
the works of isolation W iso were correctly obtained by the two
TI methods by quasi-statically tracing the equilibrium thermody-
namic points along the reversible TI paths. Note that the error bars
were larger for the PW method because the force on the PWs in
Eq. (22) was used, which was subject to larger thermal fluctuations
(see Fig. 4).

Regarding the comparison between −[γαβ(η) − 2γLV] obtained
by the mechanical route and W iso(η) by the thermodynamic
routes, they matched well for small η values; however, with the
increase of η from about η = 0.7, the difference became large
and it steeply increased above η = 0.8. For instance, the differ-
ence for the completely mixing case at η = 1 was about 193 ×
10−3 N/m, which was much larger than −(γαβ − 2γLV) of about
23 × 10−3 N/m. Briefly, the difference was because extra work is
needed to separate the components in the bulk liquid regions in
addition to the work needed to completely detach the two liq-
uids into two parts, as schematically illustrated in the right-hand-
side of Fig. 3. This point will be further examined in the next
Subsection III C.

FIG. 4. (a) Force on the right phantom wall (PW) per unit area upon the calculation
of the work of isolation WPW

iso (η) by the extended-PW method in the completely
miscible case (η = 1). The inset corresponds to Fig. 1(a-ii). (b) Schematic of the
force balance among the force on the left and right PWs, the pressure of the two
single component liquids, and that of the mixed liquid in the center between the
two PWs.

C. Decomposition of the work of isolation
for the completely miscible case

To examine the difference between the mechanical interfacial
tension and the thermodynamic work of isolation observed in Fig. 3,
we looked into the intermediate process of the PW method in the
completely miscible case (η = 1), focusing on the force on the PWs.
Figure 4(a) shows the force on the right PW per unit area ⟨Fliquid−pwα⟩

A
upon the calculation of the work of isolation WPW

iso (η) by the PW
method at η = 1, where the inset corresponds to Fig. 1(a-ii). Note
that the α–β interface was not formed in the α–β mixture because
the two liquids were identical in this system at η = 1. As the PW
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entered the liquid with the increase of xpw, almost constant force
was exerted on the PW as observed at xpw

= 5, 3.5, and 2 nm, where
the liquid separation by the semipermeable PWs proceeded with
reducing the volume of the mixed liquid. The force ⟨Fliquid−pwα⟩

A was
noticeably larger than the control pressure at these states. This force
corresponds to the osmotic pressure,39,40 as will be discussed in Sub-
section III D. The force steeply rose up just before the liquid was
completely isolated at xpw

= 0.5 nm, and it decreased down to the
control pressure at xpw

= 0.2 nm. No work was needed to further
separate the liquids where the work done by the PWs on the system
and that on the PCs were balanced.

As indicated with the arrows and snapshots in Fig. 3, the TI
was started from (η, xpw

) = (1, xpw
1 ) to equivalent different systems,

i.e., to (η0, xpw
1 ) for the DS and to (η, xpw

0 ) for the PW methods.
Indeed, along the path of the PW method, the liquids were gradu-
ally separated until the intermediate state had a LL interface without
sandwiching vapor, as shown in the snapshot at xpw

= 0.5 nm in the
inset of Fig. 4. From this intermediate state, the two liquids were
completely detached by the PWs to achieve the reference system hav-
ing two isolated LV interfaces. Now, for the case at η = 1 where α and
β were identical, we assume γαβ to be zero at the intermediate state
even though two liquids are separated by the semipermeable PWs.
Then, letting xpw

sep(η) be the PW position of the intermediate state,
the minimum work ΔW[(η, xpw

sep(η))→ (η, xpw
0 )]∣η=1 needed for the

change from this intermediate system at (η, xpw
) = (1, xpw

sep(1)) to
the reference system at (1, xpw

0 ) is equal to 2γLV, i.e.,

ΔW[(η, xpw
sep(η))→ (η, xpw

0 )]∣η=1 = −[γαβ(η = 1) − 2γLV] = 2γLV.
(28)

Note that xpw
sep(η)∣η=1 was about 0.5 nm as indicated in Fig. 4, but

in general, xpw
sep(η) is given as a function of η because the position

slightly depends on the mixing feature governed by η. We define this
as the “detachment work” Wdet(η) as

Wdet(η) ≡ ΔW[(η, xpw
sep(η))→ (η, xpw

0 )], (29)

which satisfies
Wdet(1) = 2γLV (30)

for a specific case at η = 1. In addition, we introduce the minimum
work from the target system (η, xpw

1 ) to the intermediate state at
(η, xpw

sep(η)) to separate the liquids defined by

Wsep(η) ≡ ΔW[(η, xpw
1 )→ (η, xpw

sep(η))] =Wiso(η) −Wdet(η),
(31)

which we call the “separation work.”
The value of Wsep(1) is estimated for a specific case at η = 1

from a viewpoint of configurational entropy here. Indeed, η = 1 cor-
responds to an ideal mixture for which the mixing free energy is
purely of entropic origin. In particular, since α and β were identical
under the constant temperature T and pressure p in this case, the two
states should have the same liquid structure with the same internal
energy U and volume V even though liquids α and β were separated
on the left and right sides, respectively. In other words, the differ-
ence between the two states is that particles of α and β can move in
the whole space between the two PCs in the mix-state, whereas each
kind of particle can move only within half of the space. Let G and S
be the Gibbs free energy and entropy, respectively, and let “mix” and
“sep” be the subscripts for completely mixed target and intermediate

states, respectively. Then, it follows for Wsep(1) that

Wsep(1) =
1
A
(Gsep −Gmix)∣η=1

=
1
A
[(Usep + pVsep − TSsep) − (Umix + pVmix − TSmix)]∣η=1

=
T
A
(Smix − Ssep)∣η=1 (32)

because Umix = Usep and Vmix = Vsep are assumed. The entropy dif-
ference can be estimated by the possible volume available for liquids
α and β composed of Nα and Nβ particles, respectively, as in a
thought experiment of ideal gas separation by using a semiper-
meable membrane in ordinary thermodynamics and statistical
mechanics textbooks41 as follows:

(Smix − Ssep)∣η=1 ≡ (Sα
mix − Sα

sep)∣η=1 + (S
β
mix − Sβ

sep)∣η=1

= NαkB ln
Vmix

Vα
sep
∣

η=1
+ NβkB ln

Vmix

Vβ
sep

RRRRRRRRRRRη=1

= 2NαkB ln
Vmix

Vα
sep
∣

η=1
, (33)

where kB is the Boltzmann constant; and Vmix, Vα
sep, and Vβ

sep are the
volumes of the liquid in the mixed state and those for α and β parts in
the intermediate state. Note that Nα = Nβ and Vα = Vβ were used for
the final equality. The resulting Wsep(1) obtained by Eq. (31) using
the DS result of WDS

iso (1) and Wdet(1) = 2γLV was

Wsep(1) =WDS
iso (1) − 2γLV = (193.0 ± 1.0) × 10−3 J/m2. (34)

On the other hand, the entropy difference estimated by Eqs. (32) and
(33) was

2NαkBT
A

ln
Vmix

Vα
sep
∣

η=1
= (185.7 ± 9.6) × 10−3 J/m2, (35)

where the PW position and average positions of the PCs for the
system at (η, xpw

) = (1, 0.5 nm) were used to roughly estimate the
volume Vα

sep. Indeed, the two agreed well, and this indicated that
the work of isolation included the interfacial tension and the mix-
ing free energy. Note that the method can also be used for non-ideal
mixtures, i.e., for the case of η ≠ 1, to extract both the interfacial free
energy change and the free energy of mixing, which will then contain
both enthalpic and entropic contributions.

D. Osmotic pressure
We discuss the meaning of the constant force per unit area

⟨Fliquid−pwα⟩
A , which was larger than the control pressure observed dur-

ing the liquid separation in Fig. 4(a). Figure 4(b) illustrates the
schematic of the force balance at xpw

= 3.5 nm. The pressure was
controlled at pset by the pressure control pistons on both ends of the
system. This indicated that the two single component liquids on the
left and right, both between a piston and a phantom wall (PW), had
a pressure of pset. On the other hand, the mixed liquid between the
PWs in the center was subject to the pressure of the single compo-
nent liquids as well as the PWs. Hence, the constant force per unit
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area shown with the dotted purple line in Fig. 4(a) corresponded to
the osmotic pressure, as discussed in previous work.39,40

IV. CONCLUSION
We performed molecular dynamics simulations of a

liquid–liquid interface between two different Lennard-Jones
liquids with various miscibilities and evaluated the interfacial
tension using both mechanical and thermodynamic routes. In the
case of the mechanical route, the local stress normal to the interface,
computed through the volume average method, was observed to be
constant over the entire region. From the stress distributions, we
calculated the liquid–liquid interfacial tension obtained by using
Bakker’s equation for various miscibilities and compared it with
the free energy obtained by the thermodynamic integration, where
the extended dry-surface and phantom-wall schemes were used
to quasi-statically isolate the two liquids under constant pressure
and temperature conditions. When the two components were
immiscible, the mechanical and thermodynamic results were in
good agreement, whereas when they were miscible, the values
were significantly different. This difference was attributed to the
additional free energy required to separate the binary liquid into
two components, i.e., the free energy of mixing. In the phantom
wall setup, it was possible to disentangle the free energy of mixing,
which corresponded to the work of the osmotic pressure acting
on the phantom wall prior to the complete detachment of the two
components and the change in interfacial free energy occurring
upon detachment. In the ideal mixture case, we showed that the free
energy of mixing corresponded to the entropy difference between
the mixed state and the separated state. For non-ideal mixtures, the
PW method provides the full free energy of mixing—including an
enthalpic and an entropic contribution, together with the osmotic
pressure of the mixtures.
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APPENDIX A: THERMODYNAMIC INTEGRATION
BY THE EXTENDED-DS AND PW METHODS

Based on Eq. (18), the free energy difference between the target
system at (η, xpw

) = (η, xpw
1 ) and the reference system at (η0, xpw

1 ) is
calculated by

G(η, xpw
1 ) −G(η0, xpw

1 ) = ∫

η

η0

⟨
∂H(η′, xpw

1 )

∂η′
⟩dη′. (A1)

Let the minimum work exerted on the PCs and that needed for
the change from the target system both per unit area be defined by
ΔWpc[(η, xpw

1 )→ (η0, xpw
1 )] and ΔW[(η, xpw

1 )→ (η0, xpw
1 )], respec-

tively, it follows for the former that

ΔWpc[(η, xpw
1 )→ (η0, xpw

1 )]

= pset[⟨xpc
right(η0, xpw

1 )⟩ − ⟨x
pc
right(η, xpw

1 )⟩]

+ pset[⟨xpc
left(η, xpw

1 )⟩ − ⟨x
pc
left(η0, xpw

1 )⟩]. (A2)

Hence, the latter can be obtained by

ΔW[(η, xpw
1 )→ (η0, xpw

1 )] = −
G(η, xpw

1 ) −G(η0, xpw
1 )

A
− ΔWpc[(η, xpw

1 )→ (η0, xpw
1 )]. (A3)

We define the “work of isolation” by the DS denoted by WDS
iso (η) as

this difference in this study, i.e.,

WDS
iso (η) ≡ ΔW[(η, xpw

1 )→ (η0, xpw
1 )]. (A4)

Equation (A3) with the definition in Eq. (A4) corresponds to
Eq. (20).
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Regarding Eq. (A1), let Φαβ(Γ, η) be the sum of the potential
energy between the different liquids in Eq. (4),

Φαβ(Γ, η, xpw
1 ) =∑

i ∈ α
∑
j ∈ β

ϕαβ(rij) =∑
i ∈ α
∑
j ∈ β

ηϕαα(rij), (A5)

then the integrand ⟨∂ H(η′ ,xpw
1 )

∂η′ ⟩ in Eq. (19) is given by

⟨
∂H(η′, xpw

1 )

∂η′
⟩ = ⟨

∂Φαβ(η′, xpw
1 )

∂η′
⟩ = ⟨

∂

∂η′
Nα

∑
i∈α

Nβ

∑
j∈β

ϕαβ(rij)⟩

= ⟨

Nα

∑
i∈α

Nβ

∑
j∈β

ϕαα(rij)⟩ =
1
η′
⟨

Nα

∑
i∈α

Nβ

∑
j∈β

ϕαβ(rij)⟩

=
⟨Φαβ(η′, xpw

1 )⟩

η′
, (A6)

where ⟨Φαβ(η′, xpw
1 )⟩ can be easily obtained in the MD simulation.

By inserting Eq. (A6) into Eq. (19) and further inserting it into
Eq. (A3), the work of isolation results in

WDS
iso (η) = ∫

η

η0

1
η′
[−
⟨Φαβ(η′, xpw

1 )⟩

A
]dη′

− ΔWpc[(η, xpw
1 )→ (η0, xpw

1 )], (A7)

where − ⟨Φαβ(η′ ,xpw
1 )⟩

A is the average LL potential energy per area with
its sign reverted.

In this study, we prepared multiple equilibrium systems with
different values of the miscibility parameter η ∈ [0.01, 1] and calcu-
lated the time average of the average LL potential energy over 20 ns
for each equilibrium system to numerically integrate the first term
of the RHS of Eq. (A7).

On the other hand, in the PW method, we used the PW position
xpw as the coupling parameter and reproduced the reference system
by pushing the PWs as in Fig. 1(b-ii), i.e., decreasing xpw from xpw

1
down to xpw

0 so that the two liquids were completely isolated. For this
work, we define the work of isolation by the extended-PW denoted
by WPW

iso given by

WPW
iso (η) ≡ ΔW[(η, xpw

1 )→ (η, xpw
0 )]. (A8)

In this case, the difference of G is written by

G(η, xpw
1 ) −G(η, xpw

0 ) = ∫

xpw
1

xpw
0

⟨
∂H(η, xpw′

)

∂xpw′ ⟩dxpw′. (A9)

It is obvious from the PW-liquid potential functions in Eqs. (7)–(9)
that the Hamiltonian derivative is reduced to the forces on the
PWs as

⟨
∂H(η, xpw

)

∂xpw ⟩ = ⟨−Fliquid−pwα(η, xpw
) + Fliquid−pwβ(η, xpw

)⟩

= −⟨Fliquid−pwα(η, xpw
)⟩ + ⟨Fliquid−pwβ(η, xpw

)⟩,
(A10)

where the average forces from the liquid α on PWα (right) and β on
PWβ (left) are defined by

⟨Fliquid−pwα(η, xpw
)⟩ = ⟨−∑

i ∈ α

∂ϕliquid−pwα(x′i)
∂xpw

α
⟩ (A11)

and

⟨Fliquid−pwβ(η, xpw
)⟩ = ⟨∑

i ∈ β

∂ϕliquid−pwβ(x′i)
∂xpw

β
⟩, (A12)

respectively. By using Eqs. (A10) and (A3), the work of isolation for
the present systems is obtained by

WPW
iso (η) = −

G(η, xpw
1 ) −G(η, xpw

0 )

A
− ΔWpc[(η, xpw

1 )→ (η, xpw
0 )]

= −∫

xpw
0

xpw
1

⟨Fliquid−pwα(η, xpw′
)⟩

A
dxpw′

+ ∫

xpw
0

xpw
1

⟨Fliquid−pwβ(η, xpw′
)⟩

A
dxpw′

− ΔWpc[(η, xpw
1 )→ (η, xpw

0 )]. (A13)

Note xpw
1 > xpw

0 , and also note that

⟨Fliquid−pwα⟩

A
≈ −
⟨Fliquid−pwβ⟩

A
≥ 0 (A14)

holds for the forces from the property of ϕliquid−pw and symmetry.

APPENDIX B: WORK OF ISOLATION
BY THE EXTENDED-DS METHOD

Figure 5(a) shows the work of isolation WDS
iso (η) obtained

by the DS method in Eq. (A7) as a function of the miscibility
parameter η, where the average potential energy between α and β per

FIG. 5. (a) Work of isolation WDS
iso obtained by the DS method in Eq. (A7), and

(b) average potential energy between different components α and β for various
miscibility parameters η. The inset corresponds to Fig. 1(a-i). The error bars for (b)
were smaller than the size of the symbol.
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area − ⟨Φαβ(η,xpw
1 )⟩

A in Fig. 5(b) was used. Note that the PWs did
not interact with the liquids at the PW position xpw

= xpw
1 , and the

PWs are not shown in the inset. The potential energy Φαβ was
always negative and was almost zero for small η values because
the two liquids were not mixed, as observed in the enlarged snap-
shot at η = 0.4 in Fig. 2. Hence, the resulting W iso monotonically
increased with a small gradient up to about η = 0.4. For η > 0.5,
−
⟨Φαβ⟩

A considerably increased, and the increase became steep, espe-
cially above around η = 0.7, and the resulting WDS

iso (η) also showed a
large increase around 0.7 < η < 0.85. Finally, above around η = 0.85,
the steep increase of − ⟨Φαβ⟩

A calmed down. This turning point value
of η = 0.85 matched the point above which γαβ became zero in Fig. 2.

REFERENCES
1J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
2J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19, 774 (1951).
3J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 17, 338 (1949).
4G. Bakker, Kapillarität und Oberflächenspannung (Wien-Harms, 1928), Vol. 6.
5M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford
University Press, 1987).
6M. Hayoun, M. Meyer, M. Mareschal, G. Ciccotti, and P. Turq, “Molecular
dynamics simulation of a liquid-liquid interface,” in Chemical Reactivity in Liq-
uids: Fundamental Aspects, edited by M. Moreau and P. Turq (Springer US,
Boston, MA, 1988), pp. 279–286.
7I. Benjamin, Annu. Rev. Phys. Chem. 48, 407 (1997).
8E. Feria, J. Algaba, J. M. Míguez, A. Mejía, and F. J. Blas, Phys. Chem. Chem.
Phys. 24, 5371 (2022).
9B. D. Todd, D. J. Evans, and P. J. Daivis, Phys. Rev. E 52, 1627 (1995).
10F. Leroy, D. J. V. A. Dos Santos, and F. Müller-Plathe, Macromol. Rapid
Commun. 30, 864 (2009).
11F. Leroy and F. Müller-Plathe, Langmuir 31, 8335 (2015).
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