

Title	4-fold transitive permutation groups in which the stabilizer of four points in G has an orbit of length three
Author(s)	Akiyama, Kenzi
Citation	Osaka Journal of Mathematics. 1983, 20(4), p. 747-756
Version Type	VoR
URL	https://doi.org/10.18910/9970
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

4-FOLD TRANSITIVE PERMUTATION GROUPS IN WHICH THE STABILIZER OF FOUR POINTS IN G HAS AN ORBIT OF LENGTH THREE

KENZI AKIYAMA

(Received March 15, 1982)

1. Introduction

Let G be a 4-fold transitive permutation group on Ω . If the stabilizer of four points i, j, k and l in G has an orbit of length one in $\Omega - \{i, j, k, l\}$, then G is S_5 , A_6 or M_{11} by a theorem of H. Nagao [4]. If the stabilizer of four points in G has an orbit of length two, then G is S_6 by a theorem of T. Oyama [12].

We now consider the case in which the stabilizer of four points in G has an orbit of length three and have the following results.

Theorem. Let G be a 4-fold transitive permutation group on $\Omega = \{1, 2, \dots, n\}$. If the stabilizer of four points in G has an orbit of length three, then G is S_7 , A_7 or M_{23} .

In the proof of this theorem we shall use the following lemma, which will be proved in the section 3.

Lemma. Let G be a permutation group on $\Omega = \{1, 2, \dots, n\}$ satisfying the following condition:

For any four points i, j, k and l in Ω , there exist three points i_1 , i_2 and i_3 in $\Omega - \{i, j, k, l\}$ such that any involution in G_{ijkl} fixes exactly seven points i, j, k, l, i_1 , i_2 and i_3 .

Then G is M_{23} .

The theorem implies the following corollary.

Corollary. Let D be a 4-(v, k, 1) design, where k=5, 6 or 7. If an automorphism group G of D is a 4-fold transitive permutation group on the set of points of D, then D is a 4-(11, 5, 1) design, a 4-(23, 7, 1) design or a trivial design: a 4-(5, 5, 1) design, a 4-(6, 6, 1) design or a 4-(7, 7, 1) design.

The case k=5 has been proved by H. Nagao [4] and the case k=6 by T. Oyama [12]. Hence in this paper we shall prove the remaining case k=7 in the section 4.

We shall use the same notations as in [6].

2. Proof of Theorem

Let G be a group satisfying the assumption of Theorem. Let P be a Sylow 2-subgroup of G_{1234} .

If P=1, then G is A_7 by a theorem of M. Hall ([2] Theorem 5.8.1) and the assumption.

Since P fixes a G_{1234} -orbit of length three as a set, $|I(P)| \ge 5$. If |I(P)| > 5 and $P \ne 1$, then G is M_{23} by a theorem of T. Oyama ([6], [7] and [9]) and the assumption.

If P is semiregular on $\Omega - I(P)$, $P \neq 1$ and |I(P)| = 5, then G is S_7 by a theorem of H. Nagao [5] and the assumption.

Hence from now on we assume that $P \neq 1$, |I(P)| = 5 and P is not semi-regular on $\Omega - I(P)$ and prove the theorem by way of contradiction.

(1) G_{1234} has exactly one orbit of length three.

Proof. Suppose by way of contradiction that G_{1234} has two orbits $\{i_1, i_2, i_3\}$ and $\{i'_1, i'_2, i'_3\}$ of length three. Since P fixes $\{i_1, i_2, i_3\}$ and $\{i'_1, i'_2, i'_3\}$ as a set, P fixes at least six points, which is a contradiction since |I(P)| = 5.

We may assume that $I(P) = \{1, 2, 3, 4, 5\}$ and $\{5, 6, 7\}$ is the unique G_{1234} -orbit of length three. Then $\{6, 7\}$ is a P-orbit of length two. Hence a minimal P-orbit in $\Omega - I(P)$ is of length two.

(2) Let t be a point of a minimal P-orbit in Ω -I(P). Then a Sylow 2-subgroup of the stabilizer of any four points in $N_G(P_t)^{I(P_t)}$ is of order two.

Proof. Let P' be a Sylow 2-subgroup of G_{ijkl} containing P_t for any four points i, j, k and l in $I(P_t)$. Since P_t is a normal subgroup of index two in P', $N_{P'}(P_t)^{I(P_t)} = P'^{I(P_t)}$ is a Sylow 2-subgroup of $N_G(P_t)^{I(P_t)}_{ijkl}$ and is of order two.

(3) $|I(P_t)| = 7$, 9 or 13. In particular, if $|I(P_t)| = 9$ or 13, then $N_G(P_t)^{I(P_t)} \le A_9$ or $N_G(P_t)^{I(P_t)} = S_1 \times M_{12}$, respectively.

Proof. A Sylow 2-subgroup of the stabilizer of any four points in $N_G(P_t)^{I(P_t)}$ is a nonidentity semiregular group and fixes exactly five points. Thus this follows from Theorem 1 of [8].

(4) $|I(P_t)| = 13$.

Proof. If $|I(P_t)|=13$, then $N_G(P_t)^{I(P_t)}=S_1\times M_{12}$. Hence a Sylow 2-subgroup of the stabilizer of any four points in $N_G(P_t)^{I(P_t)}$ is of order eight. This is contrary to (2). Thus $|I(P_t)| \neq 13$.

$$(5) |I(P_t)| \neq 9.$$

Proof. Suppose by way of contradiction that $|I(P_t)| = 9$. Then by (2) for any four points i, j, k and l in $I(P_t)$, any involution in $N_G(P_t)_{ijkl}^{I(P_t)}$ fixes exactly five points.

First assume that $N_G(P_t)^{I(P_t)}$ is primitive. Then since $N_G(P_t)^{I(P_t)}$ is a subgroup of A_9 and has an involution fixing five points, $N_G(P_t)^{I(P_t)} = A_9$ (see [13]). This is contrary to (2).

Next assume that $N_G(P_t)^{I(P_t)}$ is imprimitive. Then $N_G(P_t)^{I(P_t)}$ has three blocks $\{i_1,\ i_2,\ i_3\}$, $\{j_1,\ j_2,\ j_3\}$ and $\{k_1,\ k_2,\ k_3\}$ of length three. Let x be an involution fixing $i_1,\ i_2,\ j_1$ and j_2 . Then x fixes $i_3,\ j_3$ and one more point in $\{k_1,\ k_2,\ k_3\}$. Thus x is a transposition. This is a contradiction.

Finally assume that $N_G(P_t)^{I(P_t)}$ is intransitive. Then one of $N_G(P_t)^{I(P_t)}$ orbits is of length less than five.

Suppose that $N_G(P_t)^{I(P_t)}$ has an orbit $\{i_1\}$ of length one. Then for any four points i, j, k and l in $I(P_t) - \{i_1\}$, there exists an involution in $N_G(P_t)^{I(P_t)}$ fixing exactly five points i_1, i, j, k and l. Thus by a lemma of D. Livingstone and A. Wagner ([3], Lemma 6), $N_G(P_t)^{I(P_t)-\{i_1\}}$ is 4-fold transitive on $I(P_t)-\{i_1\}$. Hence by (3) $N_G(P_t)^{I(P_t)} = S_1 \times A_8$. This is contrary to (2).

Suppose that $N_G(P_t)^{I(P_t)}$ has an orbit $\{i_1, i_2\}$ of length two. Then for any three points i, j and k in $I(P_t) - \{i_1, i_2\}$, there exists an involution in $N_G(P_t)^{I(P_t)}$ fixing exactly five points i_1, i_2, i, j and k. Thus by a lemma of D. Livingstone and A. Wagner, $N_G(P_t)^{I_1(P_t)-\{i_1,i_2\}}$ is 3-fold transitive on $I(P_t)-\{i_1, i_2\}$. Hence by (3) $N_G(P_t)^{I_1(P_t)-\{i_1,i_2\}} = A_7$. This is contrary to (2).

Suppose that $N_G(P_t)^{I(P_t)}$ has an orbit $\{i_1, i_2, i_3\}$ of length three. Set $\Delta = I(P_t) - \{i_1, i_2, i_3\} = \{i_4, i_5, \dots, i_9\}$. Then for any four points in Δ , there exists an involution in $N_G(P_t)^{\Delta}$ fixing exactly these four points. Hence by a lemma of D. Livingstone and A. Wagner, $N_G(P_t)^{\Delta}$ is 4-fold transitive on Δ , and so $N_G(P_t)^{\Delta} = S_6$.

Thus $N_G(P_t)^{I(P_t)}$ has two elements

$$x = (i_4)(i_5)(i_6i_7)(i_8i_9) \cdots$$
 and $y = (i_4)(i_5)(i_6i_8)(i_7i_9) \cdots$.

Since by (3) $N_G(P_t)^{I(P_t)} \le A_9$, x and y have three fixed points or one 3-cycle on $\{i_1, i_2, i_3\}$. Thus x^3 and y^3 fix five points i_1, i_2, i_3, i_4 and i_5 and $\langle x^3, y^3 \rangle$ is an elementary abelian group of order four. This is contrary to (2).

Suppose that $N_G(P_t)^{I(P_t)}$ has an orbit $\{i_1, i_2, i_3, i_4\}$ of length four. Set $\Delta = I(P_t) - \{i_1, i_2, i_3, i_4\} = \{i_5, i_6, \dots, i_9\}$. Then for any three points i, j and k in Δ , $N_G(P_t)^{I(P_t)}$ has an involution fixing i_4 , i, j, k and one more point in $\{i_1, i_2, i_3\}$. Thus by a lemma of D. Livingstone and A. Wagner, $N_G(P_t)^{\Delta}_{i_4}$ is 3-fold transitive on Δ , and so $N_G(P_t)^{\Delta}_{i_4} = S_5$.

Thus $N_G(P_t)^{I(P_t)}$ has two elements

$$x = (i_4)(i_5)(i_6i_7)(i_8i_9) \cdots$$
 and $y = (i_4)(i_5)(i_6i_8)(i_7i_9) \cdots$.

By the same argument as is shown above, we have a contradiction.

Thus $|I(P_t)| \neq 9$.

- (6) $N_G(P_t)^{I(P_t)}$ is one of the following groups.
 - (a) $N_G(P_t)^{I(P_t)} = S_7$
 - (b) $N_G(P_t)^{I(P_t)} = S_1 \times S_6$
 - $(c) N_G(P_t)^{I(P_t)} = S_2 \times S_5$
 - $(d) N_G(P_t)^{I(P_t)} = S_3 \times S_4$

Proof. First assume that $N_G(P_t)^{I(P_t)}$ is transitive on $I(P_t)$. Since by (2) $N_G(P_t)^{I(P_t)}$ has a transposition, $N_G(P_t)^{I(P_t)} = S_7$.

Next assume that $N_G(P_t)^{I(P_t)}$ is intransitive. Then one of $N_G(P_t)^{I(P_t)}$ -orbits is of length less than four.

Suppose that $N_G(P_t)^{I(P_t)}$ has an orbit $\{i_1\}$ of length one. Then for any four points i, j, k and l in $I(P_t) - \{i_1\}$, there exists an involution in $N_G(P_t)^{I(P_t)}$ fixing exactly five points i_1, i, j, k and l. Thus by a lemma of D. Livingstone and A. Wagner, $N_G(P_t)^{I(P_t)-\{i_1\}}$ is 4-fold transitive on $I(P_t)-\{i_1\}$, and so $N_G(P_t)^{I(P_t)}=S_1\times S_6$.

Suppose that $N_G(P_t)^{I(P_t)}$ has an orbit $\{i_1, i_2\}$ of length two. Then for any three points i, j and k in $I(P_t) - \{i_1, i_2\}$, there exists an involution in $N_G(P_t)^{I(P_t)}$ fixing exactly five points i_1, i_2, i, j and k. Thus by a lemma of D. Livingstone and A. Wagner, $N_G(P_t)^{I(P_t)-\{i_1,i_2\}}$ is 3-fold transitive on $I(P_t)-\{i_1,i_2\}$, and so $N_G(P_t)^{I(P_t)-\{i_1,i_2\}}=S_5$.

On the other hand $N_G(P_t)^{I(P_t)}$ has an involution

$$x = (i_1 i_2)(i_3)(i_4)(i_5)(i_6)(i_7)$$
.

Hence $N_G(P_t)^{I(P_t)} = S_2 \times S_5$.

Suppose that $N_G(P_t)^{I(P_t)}$ has an orbit $\{i_1, i_2, i_3\}$ of length three. Set $\Delta = I(P_t) - \{i_1, i_2, i_3\} = \{i_4, i_5, i_6, i_7\}$. Then for any two points i and j in Δ , there exists an involution in $N_G(P_t)^{I(P_t)}$ fixing exactly five points i_1, i_2, i_3, i and j. Thus by a lemma of D. Livingstone and A. Wagner, $N_G(P_t)^{\Delta}_{i_1i_2i_3}$ is doubly transitive on Δ , and so $N_G(P_t)^{\Delta}_{i_1i_2i_3} = S_4$.

On the other hand $N_G(P_t)^{I(P_t)}$ has two involutions

$$x_1 = (i_1 i_2)(i_3)(i_4)(i_5)(i_6)(i_7)$$
 and $x_2 = (i_1)(i_2 i_3)(i_4)(i_5)(i_6)(i_7)$.

Hence $N_G(P_t)^{I(P_t)} = S_3 \times S_4$.

(7) $N_G(P_t)^{l(P_t)} = S_7$ and t = 6 or 7. For four points i, j, k and l in Ω , let $\{i_1, i_2, i_3\}$ be the G_{ijkl} -orbit of length three. Set $\Delta(i, j, k, l) = \{i, j, k, l, i_1, i_2, i_3\}$. Then $\{\Delta(i, j, k, l) | i, j, k, l \in \Omega\}$ forms a 4-(n, 7, 1) design on Ω .

Proof. Suppose by way of contradiction that $N_G(P_t)^{I(P_t)}$ is not S_7 . Set $I(P_t) = \{i_1, i_2, \dots, i_7\}$.

First assume that $N_G(P_t)^{I(P_t)} = S_1 \times S_6$ and $\{i_1\}$ is an orbit of length one. For four points i_1 , i_2 , i_3 and i_4 in $I(P_t)$, $N_G(P_t)^{I(P_t)}_{i_1i_2i_3i_4} = S_3$. Thus $\{i_5, i_6, i_7\}$ is the unique $G_{i_1i_2i_3i_4}$ -orbit of length three, and so $N_G(G_{i_1i_2i_3i_4}) \leq N_G(G_{I(P_t)})$. Since P_t is a Sylow 2-subgroup of $G_{I(P_t)}$, by Frattini argument $N_G(P_t)^{I(P_t)} = N_G(G_{I(P_t)})^{I(P_t)}$. Thus $N_G(P_t)^{I(P_t)} \geq N_G(G_{i_1i_2i_3i_4})^{I(P_t)}$.

On the other hand $N_G(G_{i_1i_2i_3i_4})^{(i_1,i_2,i_3,i_4)} = S_4$ by a theorem of H. Nagao [4] and $N_G(P_t)^{I(P_t)}$ has an orbit containing four points i_1 , i_2 , i_3 and i_4 . This is a contradiction.

Next assume that $N_G(P_t)^{I(P_t)} = S_2 \times S_5$ and $\{i_1, i_2\}$ is an orbit of length two. For four points i_1 , i_2 , i_3 and i_4 in $I(P_t)$, $N_G(P_t)^{I(P_t)-\{i_1,i_2,i_3,i_4\}} = S_3$. Thus by the same argument as is shown above, we have a contradiction.

Finally assume that $N_G(P_t)^{I(P_t)} = S_3 \times S_4$ and $\{i_1, i_2, i_3\}$ is an orbit of length three. For four points i_1 , i_2 , i_3 and i_4 in $I(P_t)$, $N_G(P_t)^{I(P_t)-\{i_1,i_2,i_3,i_4\}} = S_3$. Thus by the same argument as is shown above, we have a contradiction. Thus $N_G(P_t)^{I(P_t)} = S_7$.

- Let $\{t, t'\}$ be a *P*-orbit of length two. Thus $I(P_t) = \{1, 2, 3, 4, 5, t, t'\}$. Since $N_G(P_t)^{I(P_t)} = S_7$, $N_G(P_t)^{I(P_t)}^{I(P_t)} = S_3$. Therefore $\{5, t, t'\}$ is the unique G_{1234} -orbit of length three, and so t = 6 or 7.
- (8) Let Q be a subgroup of P fixing exactly seven points. Then $I(Q) = \{1, 2, \dots, 7\}$.

Proof. Let Q be a subgroup of P such that the order of Q is maximal among all subgroups of P fixing the same seven points. Since |I(Q)|=7, a Sylow 2-subgroup of the stabilizer of any four points in $N_G(Q)^{I(Q)}$ is of order two. By the same argument as is shown in (6), $N_G(Q)^{I(Q)}=S_7$, $S_1\times S_6$, $S_2\times S_5$ or $S_3\times S_4$. Thus for some four points i_1 , i_2 , i_3 and i_4 in I(Q), $N_G(Q)^{I(Q)}_{i_1i_2i_3i_4}^{I(Q)-(i_1.i_2.i_3.i_4)}=S_3$. Therefore $I(Q)-\{i_1,i_2,i_3,i_4\}$ is the unique $G_{i_1i_2i_3i_4}$ -orbit of length three. Thus $N_G(Q)^{I(Q)}=S_7$ and $I(Q)=\Delta(j_1,j_2,j_3,j_4)$ for any four points j_1,j_2,j_3 and j_4 in I(Q). Since $I(Q)\supseteq\{1,2,3,4,5\}$, by (7) $I(Q)=\{1,2,\cdots,7\}$.

Let \bar{Q} be a subgroup of P such that $|I(\bar{Q})|$ is minimal among all subgroups of P fixing more than seven points. Moreover choose \bar{Q} so that the order of \bar{Q} is maximal among all such subgroups.

Set $M=N_G(\bar{Q})^{I(\bar{Q})}$.

(9) A Sylow 2-subgroup of the stabilizer of any four points in M is noniden-

tity and any nonidentity 2-subgroup of M fixing at least four points fixes exactly five or seven points.

Proof. Let P_0 be a Sylow 2-subgroup of $N_G(\bar{Q})_{ijkl}$ for any four points i, j, k and l in $I(\bar{Q})$ and P' be a Sylow 2-subgroup of G_{ijkl} containing P_0 . Then $P_0 = N_{P'}(\bar{Q})$. Since P' > Q, $N_{P'}(\bar{Q}) > \bar{Q}$, and so $P_0^{I(\bar{Q})} = N_{P'}(\bar{Q})^{I(\bar{Q})} \neq 1$.

Let Q_0 be a 2-subgroup of $N_G(\overline{Q})_{ijkl}$ such that $Q_0 > \overline{Q}$, P_0 be a Sylow 2-subgroup of $N_G(\overline{Q})_{ijkl}$ containing Q_0 and P' be a Sylow 2-subgroup of G_{ijkl} containing P_0 . Then since $P' \ge N_{P'}(\overline{Q}) = P_0 \ge Q_0 > \overline{Q}$, by the maximality of $|\overline{Q}|$ $I(P') \subseteq I(Q_0) \subset I(\overline{Q})$, and so $|I(Q_0^{I(\overline{Q})})| = |I(Q_0)| = 5$ or 7.

(10) Let $\{i_1, i_2, i_3\}$ be the unique G_{ijkl} -orbit of length three for any four points i, j, k and l in $I(\bar{Q})$.

There exists an involution in M_{ijkl} fixing seven points if and only if $I(\bar{Q})$ contains three points i_1 , i_2 and i_3 .

Then an involution in M_{ijkl} fixing seven points fixes seven points i, j, k, l, i_1, i_2 and i_3 .

Proof. If there exists an involution in M_{ijkl} fixing seven points, then there exists a 2-subgroup Q of G_{ijkl} such that $Q > \overline{Q}$ and |I(Q)| = 7. By (8) $I(Q) = \{i, j, k, l, i_1, i_2, i_3\}$, and so $I(\overline{Q})$ contains three points i_1 , i_2 and i_3 .

Conversely $I(\overline{Q})$ contains three points i_1 , i_2 and i_3 . Let P' be a Sylow 2-subgroup of G_{ijkl} containing \overline{Q} and $I(P') = \{i, j, k, l, i_1\}$. Then $P' > P'_{i_2} \ge \overline{Q}$ and $I(P'_{i_2}) = \{i, j, k, l, i_1, i_2, i_3\}$. Thus $P'_{i_2} > \overline{Q}$, and so $N_{P_{i'_2}}(\overline{Q}) > \overline{Q}$. By the maximality of $|\overline{Q}|$ there exists an involution in M_{ijkl} fixing seven points.

(11) Let $\{i_1, i_2, i_3\}$ be the unique G_{ijkl} -orbit of length three for any four points i, j, k and l in $I(\overline{Q})$. Then $I(\overline{Q})$ contains three points i_1, i_2 and i_3 and any involution in M_{ijkl} fixes exactly seven points i, j, k, l, i_1, i_2 and i_3 .

Proof. Suppose by way of contradiction that for some four points i, j, k and l in $I(\bar{Q})$, there exists an involution x in M_{ijkl} fixing exactly five points. Since $|I(x) \cap \{i_1, i_2, i_3\}| \ge 1$ and $|I(\bar{Q})| \ge 9$, we may assume that

$$x=(i)(j)(k)(l)(i_1)(j_1j_2)\cdots,$$

where $\{j_1, j_2\} \neq \{i_2, i_3\}$. Set $C = C_M(x)_{j_1 j_2}$ and we consider $C^{I(x)}$.

For any two points k_1 and k_2 in I(x), x normalizes $M_{j_1j_2k_1k_2}$. Since $M_{j_1j_2k_1k_2}$ is of even order, $M_{j_1j_2k_1k_2}$ has an involution y commuting with x. Then $y \in C_M(x)_{j_1j_2k_1k_2}$. Since |I(x)| = 5, y fixes one more point k in I(x). If $y^{I(x)} = 1$, then y fixes i, j, k, l, i_1 , j_1 and j_2 , which is contrary to (10). Hence $y^{I(x)}$ is a transposition.

Thus for any two points k_1 and k_2 in I(x), there exists an involution fixing exactly three points k_1 , k_2 and exactly one more point k in $I(x) - \{k_1, k_2\}$.

First assume that $C^{I(x)}$ is transitive on I(x). Since $C^{I(x)}$ has a transposition, $C^{I(x)} = S_5$.

Next assume that $C^{I(x)}$ is intransitive on I(x). Then one of the $C^{I(x)}$ -orbits is of length less than three.

Suppose that $C^{I(x)}$ has an orbit $\{l_1\}$ of length one. Then for any two points k_1 and k_2 in $I(x) - \{l_1\}$, there exists an involution in $C^{I(x)}$ fixing exactly three points l_1 , k_1 and k_2 . Then by a lemma of D. Livingstone and A. Wagner, $C^{I(x)-(l_1)}_{l_1}$ is doubly transitive on $I(x)-\{l_1\}$, and so $C^{I(x)-(l_1)}_{l_1}=S_4$. Thus $C^{I(x)}=S_1\times S_4$.

Suppose that $C^{I(x)}$ has an orbit $\{l_1, l_2\}$ of length two. Then for any point k_1 in $I(x) - \{l_1, l_2\}$, there exists an involution in $C^{I(x)}$ fixing exactly three points l_1 , l_2 and k_1 . Then by a lemma of D. Livingstone and A. Wagner, $C^{I(x)-\{l_1,l_2\}}_{l_1}$ is transitive on $I(x) - \{l_1, l_2\}$, and so $C^{I(x)-\{l_1,l_2\}}_{l_1} = S_3$.

On the other hand $C^{I(x)}$ has an involution

$$x' = (l_1 l_2)(l_3)(l_4)(l_5)$$
.

Thus $C^{I(x)} = S_2 \times S_3$.

Hence $C^{I(x)} = S_5$, $S_1 \times S_4$ or $S_2 \times S_3$. In any cases for some two points l_1 and l_2 in I(x), $C^{I(x)-[l_1,l_2]}_{l_1|2} = S_3$. Then $I(x)-\{l_1, l_2\} = \{l_3, l_4, l_5\}$ is the unique $G_{j_1j_2l_1l_2}$ -orbit of length three. Since $I(\bar{Q}) \supseteq \{j_1, j_2, l_1, l_2, l_3, l_4, l_5\} \supseteq I(x) = \{i, j, k, l, i_1\}$, by (7) $\{i, j, k, l, i_1, i_2, i_3\} = \{i, j, k, l, i_1, j_1, j_2\}$, which is a contradiction.

Thus for any four points i, j, k and l in $I(\overline{Q})$, $I(\overline{Q})$ contains all the points of G_{ijkl} -orbit $\{i_1, i_2, i_3\}$ of length three and any involution in M_{ijkl} fixes exactly seven points i, j, k, l, i_1 , i_2 and i_3 .

(12) $M=M_{23}$ and $\{\Delta(i, j, k, l) | i, j, k, l \in I(\bar{Q})\}$ forms a 4-(23, 7, 1) design on $I(\bar{Q})$.

Proof. By (9) and (11) M satisfies the condition of Lemma. By Lemma $M=M_{23}$, and so $\{\Delta(i, j, k, l) | i, j, k, l \in I(\bar{Q})\}$ forms a 4-(23, 7, 1) design on $I(\bar{Q})$.

Let s be a point of a minimal \bar{Q} -orbit in $\Omega - I(\bar{Q})$. Set $R = \bar{Q}_s$ and $N = N_G(R)^{I(R)}$.

(13) Let u be an involution in N such that $I(u)=I(\bar{Q})$, and let (i_1i_2) be a 2-cycle of u. For any two points i and j in I(u), set $\Delta(i, j)=I(u)\cap\Delta(i_1, i_2, i, j)$. Then $|\Delta(i, j)|=3$.

Proof. Let \overline{u} be a 2-element of $N_G(R)$ such that $\overline{u}^{I(R)} = u$. For any two points i and j in I(u), $\langle \overline{u}, R \rangle$ fixes $\Delta(i_1, i_2, i, j)$ as a set. Since u fixes two points i and j, u fixes one more point k in $\Delta(i_1, i_2, i, j) - \{i_1, i_2, i, j\}$. Thus $|\Delta(i, j)| \geq 3$.

Suppose that $|\Delta(i, j)| = 5$ and set $\Delta(i, j) = \{i, j, k, l, m\}$. Then $\Delta(i_1, i_2, i, j) = \{i_1, i_2, i, j, k, l, m\}$. By (12) $I(u) \supseteq \Delta(i_1, i_2, i, j) \ni i_1, i_2$, which is a contradiction. Hence $|\Delta(i, j)| = 3$.

(14) $\{\Delta(i, j) | i, j \in I(u)\}$ forms a 2-(23, 3, 1) design on I(u). Thus we have a contradiction and complete the proof of Theorem.

Proof. For any two points i and j in I(u), $\Delta(i, j)$ is a subset of I(u). Suppose that $\Delta(i, j) \ni i'$, j'. Set $\Delta(i, j) = \{i, j, k\}$ and $\Delta(i_1, i_2, i, j) = \{i, j, k, i_1, i_2, j_1, j_2\}$. Since i', $j' \in \{i, j, k\}$, $\Delta(i_1, i_2, i, j) \ni i_1, i_2, i', j'$, and so $\Delta(i_1, i_2, i, j) = \Delta(i_1, i_2, i', j')$. Thus $\Delta(i, j) = \Delta(i', j')$.

Hence $\{\Delta(i, j) | i, j \in I(u)\}$ forms a 2-(23, 3, 1) design on I(u). Then the number of blocks is

$$\frac{\binom{23}{2}}{\binom{3}{2}} = \frac{23 \cdot 22}{3 \cdot 2} = \frac{253}{3},$$

which is a contradiction.

Thus we complete the proof of Theorem.

3. Proof of Lemma

Let G be a group satisfying the assumption of Lemma.

(1) For any four points i, j, k and l in Ω , let $\{i, j, k, l, i_1, i_2, i_3\}$ be the set of the fixed points of an involution in G_{ijkl} . Set $\Delta(i, j, k, l) = \{i, j, k, l, i_1, i_2, i_3\}$. Then $\{\Delta(i, j, k, l) | i, j, k, l \in \Omega\}$ forms a 4-(n, 7, 1) design on Ω .

Proof. Suppose that $\Delta(i, j, k, l) \ni i', j', k', l'$. Then there exists an involution x in G_{ijkl} fixing i', j', k' and l'. Thus x is an involution in $G_{i'j'k'l'}$, and so $\Delta(i, j, k, l) = \Delta(i', j', k', l')$. Hence $\{\Delta(i, j, k, l) | i, j, k, l \in \Omega\}$ forms a 4-(n, 7, 1) design on Ω .

We may assume that $\Delta(1, 2, 3, 4) = \{1, 2, 3, 4, 5, 6, 7\}$. Let a be an involution in G_{1234} . Then we may assume that

$$a = (1)(2) \cdots (7)(8 \ 9) \cdots$$

Set $T=C_G(a)_{89}$.

(2) For any two points i and j in I(a), set $\Delta(i,j) = \Delta(1,2,3,4) \cap \Delta(8,9,i,j)$. Then $\{\Delta(i,j) | i, j \in I(a)\}$ forms a 2-(7, 3, 1) design on I(a) and $T^{I(a)} \leq PGL(3,2)$.

Proof. Since a normalizes G_{89ij} and G_{89ij} is of even order, G_{89ij} has an involution x commuting with a. Thus $x \in T_{ij}$. Since |I(a)| = 7, x fixes one more point in I(a), and so $|\Delta(i,j)| \ge 3$.

If $|\Delta(i, j)| \ge 4$, then by (1) $\Delta(1, 2, 3, 4) = \Delta(8, 9, i, j)$, which is a contradiction. Thus $|\Delta(i, j)| = 3$.

Suppose that $\Delta(i, j) \ni i', j'$. Then $\Delta(8, 9, i, j) \ni 8, 9, i', j'$, and so by (1) $\Delta(8, 9, i, j) = \Delta(8, 9, i', j')$. Thus $\Delta(i, j) = \Delta(i', j')$.

Hence $\{\Delta(i,j)|i,j\in I(a)\}$ forms a 2-(7, 3, 1) design on I(a). Since $T^{I(a)}$ is an automorphism group of this design, $T^{I(a)} \leq PGL(3,2)$.

(3)
$$|\Omega| = 23$$
 and $G \le M_{23}$.

Proof. Let $\{i_1, i_2\}$ be a subset of I(a) consisting of two points. Since a normalizes $G_{89i_1i_2}$ and $G_{89i_1i_2}$ is of even order, a centralizes an involution x in $G_{89i_1i_2}$, and so $x \in C_G(a)_{89}$. By (2) $x^{I(a)} \in C_G(a)_{89}^{I(a)} \le PGL(3, 2)$. Thus $I(x^{I(a)}) = \{i_1, i_2, i_3\}$ and x fixes two points of a 2-cycle $(\pm (89))$ of a. Thus a subset $\{i_1, i_2\}$ of I(a) determines uniquely a 2-cycle (k l) $(\pm (89))$ of a.

If a subset $\{j_1, j_2\}$ of I(a) determines the same 2-cycle $(k \ l)$ of a, then an involution x' in G_{89kl} is contained in $G_{89j_1j_2}$. Thus $\{j_1, j_2\} \subseteq \Delta(8, 9, k, l) \cap I(a) = \{i_1, i_2, i_3\}$. Hence just three subsets $\{i_{\mu}, i_{\nu}\}$ of I(a) determines the same 2-cycle $(k \ l)$ of a.

Now suppose that a 2-cycle $(k \ l)$ $(\pm (8 \ 9))$ of a is given. Then since a normalizes G_{89kl} and G_{89kl} is of even order, a centralizes an involution x in G_{89kl} , and so $x^{I(a)} \in C_G(a)_{89kl}^{I(a)} \le PGL(3, 2)$. Thus $I(x^{I(a)}) = \{i_1, i_2, i_3\} \subseteq I(a)$. Since $x \in G_{89i, i_2}$, $\{i_1, i_2\}$ determines $(k \ l)$ in the above sence.

Thus we have that the number of 2-cycles of a other than (8 9) is equal to $\frac{1}{3} {}_{7}C_{2}$ =7. Hence $|\Omega| = 2+7+2\cdot 7=23$. Thus $\{\Delta(i,j,k,l)|i,j,k,l\in\Omega\}$ forms a 4-(23, 7, 1) design. Hence $G \leq M_{23}$.

(4) $G=M_{23}$ and we complete the proof.

Proof. Let P be a Sylow 2-subgroup of G_{ijkl} for any four points i, j, k and l in Ω . By the assumption $P \neq 1$, $|I(P)| \geq 4$ and $P \leq M_{23}$ by (3). Thus |I(P)| = 7 and $N_G(P)^{I(P)} \leq A_7$. Since P is nonidentity semiregular by the assumption, $G = M_{23}$ by Theorem 1 in [8].

Thus we complete the proof of Lemma.

4. Proof of Corollary

Let D be a 4-(v, 7, 1) design. Let $\{1, 2, 3, 4, i, j, k\}$ be a block containing $\{1, 2, 3, 4\}$. Then G_{1234} fixes $\{i, j, k\}$ as a set. If G_{1234} has an orbit of length one in $\{i, j, k\}$, then $G = S_5$, A_6 or M_{11} by a theorem of H. Nagao [4]. Hence D is a 4-(11, 7, 1) design. Then the number of blocks is

$$\frac{\binom{11}{4}}{\binom{7}{4}} = \frac{11 \cdot 10 \cdot 9 \cdot 8}{7 \cdot 6 \cdot 5 \cdot 4} = \frac{66}{7},$$

756 K. AKIYAMA

which is a contradiction. If $\{i, j, k\}$ is a G_{1234} -orbit, then $G = S_7$, A_7 or M_{23} by Theorem. Hence D is a 4-(7, 7, 1) design or a 4-(23, 7, 1) design. Thus we complete the proof of Corollary.

Acknowledgement. The author thanks Professor H. Nagao and Professor T. Oyama for their helpful advice and kind encouragements.

References

- [1] W. Burnside: Theory of groups of finite order, Second edition, Cambridge Univ. Press, 1911.
- [2] M. Hall: The Theory of groups, Macmillan, New York, 1959.
- [3] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393-403.
- [4] H. Nagao: On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
- [5] H. Nagao: On multiply transitive groups V, J. Algebra 9 (1968), 240-248.
- [6] T. Oyama: On multiply transitive groups VIII, Osaka J. Math. 6 (1969), 315–319.
- [7] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
- [8] T. Oyama: On multiply transitive groups X, Osaka J. Math. 8 (1971), 99-130.
- [9] T. Oyama: On multiply transitive groups XI, Osaka J. Math. 10 (1973), 373-439.
- [10] T. Oyama: On multiply transitive groups XII, Osaka J. Math. 11 (1974), 595-636.
- [11] T. Oyama: On multiply transitive groups XIII, Osaka J. Math. 13 (1976), 367–383.
- [12] T. Oyama: On multiply transitive groups XIV, Osaka J. Math. 15 (1978), 351–358.
- [13] C.C. Sims: Computational methods in the study of permutation groups, (in Computational Problems in Abstract Algebra), Pergamon Press, London, 1970, 169–183.
- [14] H. Wielandt: Finite permutation groups, Academic Press, New York, 1964.
- [15] E. Witt: Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12 (1937), 256-264.

Department of Applied Mathematics Faculty of Science Fukuoka University Nanakuma 8–19–1, Jyonan-ku Fukuoka 814–01 Japan