<table>
<thead>
<tr>
<th>Title</th>
<th>Modules over Dedekind prime rings. I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Marubayashi, Hidetoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 10(3) P.611–P.616</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1973</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9972</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9972</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA
http://ir.library.osaka-u.ac.jp/dspace/

Osaka University
The purpose of this paper is the investigation of modules over Dedekind prime rings. In Section 1, we shall prove that the double centralizer of a P-primary module over a Dedekind prime ring R is isomorphic to \hat{R}_P or \hat{R}_P/\hat{P}^n, where P is a nonzero prime ideal of R and \hat{R}_P is the P-adic completion of R with unique maximal ideal \hat{P}. Using this result we shall determine the structure of the double centralizer of primary modules over bounded Dedekind prime rings. In Section 2, we shall give a characterization of quasi-injective modules over bounded Dedekind prime rings. This paper is a continuation of [7] and [8]. A number of concepts and results are needed from [7] and [8].

1. The double centralizer of torsion modules

Throughout this paper, R will denote a Dedekind prime ring with the two-sided quotient ring Q, we denote the completion of R with respect to P by \hat{R}_P and its maximal ideal by \hat{P}. By Theorem 1.1 of [6], \hat{R}_P is a complete, g-discrete valuation ring in the sense of [8] and $\hat{R}_P=(\hat{L})_k$, where \hat{L} is a complete, discrete valuation ring with unique maximal ideal \hat{P}_o. Further, $\hat{P}=p_o\hat{R}_P=\hat{R}_Pp_o$, where $p_o\in \hat{L}$ with $\hat{p}_o=p_o\hat{L}$. Since the proper ideals of \hat{R}_P are only the powers of \hat{P}, we obtain $\hat{P}^n=\hat{R}_Pp^nP_\hat{P}$ for $n=0, 1, 2, \ldots$ (cf. the proof of Theorem 4.5 of [4]). In this section we denote the complete set of the matrix units of $\hat{R}_P=(\hat{L})_k$ by e_{ij} ($i=1, 2, \ldots, k$).

Let M be a P-primary module. Then, by the same way as in Lemma 3.14 of [7], M is an \hat{R}_P-module by a natural way. It is evident that $\text{Hom}_R(M, M)=\text{Hom}_{\hat{R}_P}(M, M)$ and that M is torsion as an \hat{R}_P-module. If M is indecomposable, P-primary and divisible, then M is isomorphic to $\lim_{\leftarrow} e_{11}\hat{R}_P/e_{11}\hat{P}^n$, and we denote it by $R(P^n)$. If M is indecomposable, P-primary with $O(M)=P^n$, then M is isomorphic to $e_{11}\hat{R}_P/e_{11}\hat{P}^n$, and we denote it by $R(P^n)$.

Lemma 1.1. Let R be a Dedekind prime ring. Then the double centralizer D_n of the module $R(P^n)$ is isomorphic to \hat{R}_P/\hat{P}^n.

Proof. By Lemma 3.20 of [7], $L_n=\text{Hom}_R(R(P^n), R(P^n))$, where $L_n=\hat{L}/\hat{P}^n$. Hence we have
\[R(P^n) = L_n(e_{i1} + e_{i2} \hat{P}^n) + \cdots + L_n(e_{i_k} + e_{i1} \hat{P}^n). \]

From this the assertion is evident.

Lemma 1.2. Let \(R \) be a Dedekind prime ring. Then the double centralizer \(D \) of the module \(R(P^n) \) is isomorphic to \(\hat{R}_P \).

Proof. It is clear that \(R(P^n) \) is faithful as an \(\hat{R}_P \)-module. Hence \(D \cong \hat{R}_P \).

Let \(d \) be any nonzero element of \(D \). Then \(\tilde{d}^n[(e_{i1} \hat{R}_P/e_{i1} \hat{P}^n) d] = 0 \), because \(\text{Hom}_R(R(P^n), R(P^n)) = e_{i1} \hat{R}_P e_{i1} \) (cf. Theorem 3.21 of [7]). Therefore we may assume that \(d = d | e_{i1} \hat{R}_P/e_{i1} \hat{P}^n = r_n (r_n \in \hat{R}_P) \) by Lemma 1.1, where \(| \) means the restriction and \(r_n \) is unique up to mod \(\hat{P}^n \). Since \(R(P^n) \) is injective, the natural homomorphism \(e_{i1} \hat{R}_P/e_{i1} \hat{P}^{n+1} \to e_{i1} \hat{R}_P/e_{i1} \hat{P}^n \) can be extended to a map \(\varphi_n: R(P^n) \to R(P^n) \). Because

\[(e_{i1} \hat{R}_P/e_{i1} \hat{P}^n) r_n = [\varphi_n(e_{i1} \hat{R}_P/e_{i1} \hat{P}^{n+1})] d = \varphi_n[(e_{i1} \hat{R}_P/e_{i1} \hat{P}^{n+1}) d] = (e_{i1} \hat{R}_P/e_{i1} \hat{P}^n) r_{n+1}, \]

we have \(r_n - r_{n+1} \in \hat{P}^n \). Therefore \(\hat{r} = (\cdots, r_n, \cdots) \in \hat{R}_P \) and it is easily seen that \(d = \hat{r} \).

Lemma 1.3. Let \(S \) be a \(g \)-discrete valuation ring with unique maximal ideal \(P \) (cf. [8]). Assume that \(B \) is a submodule of the torsion \(S \)-module \(M \) and that \(B = \sum_n \oplus B_n \), where \(B_n \) is a direct sum of cocyclic modules of order \(P^n \). Then \(B \) is a basic submodule of \(M \) if and only if

\[M = B_1 \oplus \cdots \oplus B_n \oplus (B_n^+ + MP^n) \quad \text{for every } n, \]

where \(B_n^+ = B_{n+1} \oplus B_{n+2} \oplus \cdots \) (cf. Theorem 32.4 of [2]).

In the case of indecomposable, injective and \(P \)-primary modules the following theorem was proved by Kuzmanovich [6].

Theorem 1.4. Let \(R \) be a Dedekind prime ring, let \(M \) be a \(P \)-primary module and let \(D \) be the double centralizer of \(M \). Then

(a) If \(O(M) = P^n \), then \(D \cong \hat{R}_P/P^n \).

(b) If \(M \) is faithful, then \(D \cong \hat{R}_P \).

Proof. We may assume without loss of generality that \(R \) is a complete, \(g \)-discrete valuation ring with unique maximal ideal \(P \). Let \(H = \text{Hom}_R(M, M) \)

and \(D = \text{Hom}_R(M, M) \).

(a) It is evident that \(D \cong R/P^n \). By Theorems 3.7 and 3.38 of [7], \(M = \sum e_i M \), where \(e_i M \cong R(P^n) \) and \(e_i \) is an idempotent in \(\text{Hom}_R(M, M) \). Since \(O(M) = P^n \), there is \(e_i \in H \) such that \(O(e_i M) = P^n \). Let \(d \) be any element of \(D \). Then \((e_i M) d = e_i (Md) \subseteq e_i M \). Thus, by Lemma 1.1, \(d = e_i M = r \), where \(r \in R \) and it is unique up to mod \(P^n \). Now, for any direct summand

\[a R \]
e_iM, there exists \(\varphi_i \in H \) such that \(\varphi_i(e_i x) = e_i M \). Let \(u \) be any element of \(e_iM \). Then \(ud = \varphi_i(vd) = \varphi_i(vr) = ur \), and thus we obtain \(\text{d} = r \), as desired.

(b) It is evident that \(D \supseteq R \). To prove the converse inclusion, let \(d \) be any nonzero element of \(D \).

Case I. If \(M \) is divisible, then \(M = \sum \oplus M_i \), where \(M_i = R(P^{\ast_1}) \). Let \(\pi_i \) be the projection map from \(M \) to \(M \). Therefore, by Lemma 1.2, \(d_i = d | M_i = r_i \), where \(r_i \in R \). For any \(i, j \), there is an element \(\varphi_i \in H \) such that \(\varphi_i(M_i) = M_j \). Let \(y \) be any element of \(M_j \) and let \(\varphi_i(x) = y(x \in M_i) \). Then \(yr_i = yd = [\varphi_i(x)]d = \varphi_i(xd) = yr_i \). Thus we have \(r_i = r_j \), and so \(d = r \) for some \(r \in R \).

Case II. If \(M \) is reduced, then it is evident that \(B^* \neq 0 \) for every natural integer \(n \), where \(B^* \) is defined in Lemma 1.3. Hence we have submodules \(\{ M_i \} \) with the following properties:

1. \(M_i = R(P^{n_i}) \), where \(n_1 < n_2 < \cdots \).
2. \(M_i = e_i M \), where \(e_i \) is an idempotent element of \(H \). Then \((e_i M) = (e_i M) = e_i M \) and \(H \supseteq \text{Hom}(e_i M, e_i M) \). Hence \(d_i = d | M = r_i \) by Lemma 1.2, where \(r_i \in R \).

For any \(i, j \), \(i < j \), there is an element \(e_{ij} \in H \) such that \(e_{ij}(M_j) = M_i \). Now let \(x \) be any element of \(e_i M \). Then we have

\[
(e_{ij}x)r_i = (e_{ij}x)d = e_{ij}(xd) = e_{ij}(xr_j) = (e_{ij}x)r_j.
\]

Hence \(r_i - r_j \in P^{n_i} \), and so \(r_i = r_j \) for every \(i \). Let \(u \) be any uniform element of \(M \). Then \(uR = R(P^l) \) for some \(l \) by Lemma 3.37 of [7]. So there is \(\theta_i \in H \) such that \(\theta_i \) maps \(e_i M \) onto \(uR \). Let \(\theta_i(e_i y) = u_y \), where \(y \in M \). Then we obtain

\[
ud = [\theta_i(e_i y)]d = \theta_i[(e_i y)d] = \theta_i[(e_i y)r] = u^r.
\]

Let \(m \) be any element of \(M \). Then, by Theorem 3.38 of [7], \(mR \) is a direct sum of a finite number of reduced cocyclic modules, and so \(md = mr \), as desired.

Case III. If \(M \) is not reduced, then there are idempotent elements \(e_1, e_2 \in H \) such that \(M = e_1 M \oplus e_2 M \), where \(e_1 M \) is divisible and \(e_2 M \) is reduced. First we assume that \(e_1 M \) is not bounded, then, by Cases I, II, there exist \(r_1, r_2 \in R \) such that \(d_i = r_i \), where \(d_i = d | e_i M \) (i = 1, 2). Let \(u \) be any uniform element in \(e_i M \). Then there is \(\varphi \in H \) such that \(\varphi(e_2 M) = uR \), because \(e_2 M \) contains a reduced, cocyclic direct summand \(U \) such that \(O(U) \subseteq O(uR) \). Let \(\varphi(x) = u_y \), where \(x \in e_2 M \). Then we have

\[
ur_1 = ud = [\varphi(x)]d = \varphi(xd) = \varphi(xr_2) = ur_2.
\]

Therefore \(r_1 = r_2 \). Second assume that \(e_2 M \) is of bounded order. By Case I, there is \(r_1 \in R \) such that \(d_1 = d | e_1 M = r_1 \) and \(e_2 M = \sum \oplus N_i \) by Theorem 3.7 of [7], where \(N_i = R(P^{n_i}) \). For each \(i \), there is \(\theta_i \in H \) such that it induces a mono-
morphism from N_i to e_iM. Let u be any element of N_i and let $\theta_i(u)=x\in e_iM$. Then we obtain

$$\theta_i(ur_i) = xd = [\theta_i(u)]d = \theta_i(ud).$$

Hence $ur_i=ud$, and thus we have $r_i=d$. This completes the proof of Theorem 1.4.

Corollary 1.5. Let R be a bounded Dedekind prime ring, let M be a torsion module and let $M=\sum \oplus M_p$ be the primary decomposition of M (cf. Theorem 3.2 of [7]). Then the double centralizer D of M is isomorphic to $\Pi \hat{R}_p|\hat{P}^n_p$, where $O(M_p)=P^n_p$, n_p is a natural integer or ∞ and $\hat{P}^\infty=0$.

Proof. Let $\alpha=(r_p+\hat{P}^n_p)$ be any element of $\Pi \hat{R}_p|\hat{P}^n_p$, where $r_p\in \hat{R}_p$ and let $m=\sum p^i m_{pi}$ be any element of M, where $m_{pi}\in M_p$. Define $ma=\sum p^i m_{pi}$. By Theorem 1.4, it is easily seen that $\alpha \in D$. Conversely let d be any element of D. Since $M_d \subseteq M_p$, we have $d_p=r_p+\hat{P}^n_p$, where $d_p=d|M_p$. Then it is evident that $d=(r_p+\hat{P}^n_p)$.

2. Quasi-injective modules

Let R be a bounded Dedekind prime ring and let Q be the quotient ring of R. In [7], the author proved that any injective module is a direct sum of minimal right ideals of Q and modules of type P^∞ for various prime ideals P.

In this section, we shall characterize quasi-injective modules. By virtue of Goldie’s theorem, $Q=(F)_k$, where F is a division ring. Throughout this section we denote a complete matrix units of $Q=(F)_k$ by e_i.

Lemma 2.1. If a module $M=\sum \oplus M_\alpha$ and if N is a fully invariant submodule of M, then $N=\sum \oplus (M_\alpha \cap N)$ (cf. Lemma 9.3 of [3]).

Theorem 2.2 Let R be a bounded Dedekind prime ring and let M be a module. Then M is quasi-injective if and only if it is;

(i) injective, or

(ii) a torsion module such that every P-primary component M_p is a direct sum of isomorphic cocyclic modules.

Proof. The sufficiency easily follows from Theorem 1.1 of [5] and Proposition 1.1 of [8].

Conversely assume that M is quasi-injective. Then the injective envelope $E(M)$ of M is isomorphic to $\sum \oplus \bar{M}_\alpha$, where \bar{M}_α is a minimal right ideal of Q or a module of type P^∞. By Lemma 2.1 and Theorem 1.1 of [5], we have $M=\sum \oplus M_\alpha$, where $M_\alpha=\bar{M}_\alpha \cap M$.

Case 1. If M is torsion-free then we may assume that $\bar{M}_\alpha=e_{11}Q$ for all α. Assume that M is not injective, then there is M_α such that $M_\alpha \subseteq \bar{M}_\alpha=e_{11}Q$. By
virtue of Faith-Utumi’s Theorem (cf. Theorem 6 of [1], p. 91) there is an Ore domain D such that

$$S = \sum_{i,j} D e_{ij} \subseteq R \subseteq Q = (F)_h,$$

and F is the quotient division ring of D. Now let

$$U = \left\{ \begin{pmatrix} d_{11} & \cdots & d_{1k} \\ 0 & \ddots & \vdots \\ 0 & \cdots & d_{kk} \end{pmatrix} \mid d_{ij} \in D \right\}.$$

Since U is a uniform right ideal of S and Q is a quotient ring of S, we have $\theta \neq M_a U$. Hence there exists an element $u_a \in M_a$ such that $\theta = u_a U \approx U$ as an S-module. Let q be any element of $\bar{M}_a (= e_{11}Q)$. Then there is an element $d \in D$ such that $d q = v \in U$, because D is an Ore domain. It is clear that $O(v) = O(q)$.

Since $u_a U \approx U$, there exists an element $u \in U$ such that $O(u_a u) = O(v)$. The map $\theta : u_a u R \to q R$ defined by $u_a u r \to qr$, for $r \in R$, can be extended to the map $\theta : \bar{M}_a \to \bar{M}_a$. Since $\theta(u) \subseteq M$ and $\theta(u_a u) = q \in M$, we have $\bar{M}_a = M_a$, which is a contradiction. Therefore M is injective.

Case II. If M is torsion, then $M = \sum P_m$, where M_m is the P-primary part of M and M_m is also quasi-injective. Hence we may assume that M is P-primary, quasi-injective and that $M = \sum M_m$ where $M_m = R(P^n)$ ($n = 1, 2, \ldots$ or ∞). If $M_m = R(P^n)$ and $M_m = R(P^m)$ for $\alpha \neq \beta$, where $\infty \geq n > m$, then there exists a monomorphism $\phi : M_m \to \bar{M}_m$ ($= R(P^m)$), and it can be extended to an isomorphism $\phi : \bar{M}_m \to \bar{M}_m$. It is clear that $\phi(M_m) \subseteq \bar{M}_m \cap M = M_m$. This is a contradiction, and thus $m = n$.

Case III. If M is mixed, then since $E(M) = C \oplus \bar{T}$, where C is torsion-free and \bar{T} is the torsion part of $E(M)$, we obtain $M = C \oplus T$, where $C = \overline{C} \cap M$ and $T = \overline{T} \cap M$. By Case I, $C = \sum \oplus C_{1q}$ and, by Case II, $T = \sum \oplus T_{p}$, $T_p = \sum \oplus R(P^n)$ for fixed n_p, where T_p is the P-primary part of T and n_p is a natural integer or ∞. Now assume that M is not injective, then there exists a prime ideal P such that T_P is not injective, i.e., n_p is a natural integer. Consider the module $e_{11}R/e_{11}P^m$ for a fixed $m (> n_p)$. By Theorem 3.7 of [7], $e_{11}R/e_{11}P^m$ contains $R(P^m)$ as a direct summand. Hence there exists a map η such that $e_{11}R \to R(P^m) \to 0$ is exact. It can be extended to a map $\eta : e_{11}Q \to R(P^m)$. Thus we have $R(P^m) \subseteq \eta(e_{11}Q) \subseteq M$, which is a contradiction.

Osaka University

References