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Introduction

The concept of anti-self-dual connections plays an important role in Yang-
Mills theory for 4-manifolds (cf. Atiyah’s monograph [1]). For instance, Ati-
yah, Hitchin and Singer [2] determined the moduli space of instantons on S*
by differential geometric method, while Hartshorne [5] obtained the same result
via twistor theory by showing that the moduli space of instantons over S* is the
real part of the moduli space of null-correlation bundles over P3(C).

Now the purpose of this paper is to give a generalization of the result of
Hartshorne [5] in the following way. We have the notion of B,-connections
Vv on vector bundles over quaternionic Kihler manifolds M as higher dimen-
sional analogue of anti-self-dual connections over 4-manifolds (cf. [3], [11], [15]).
Let p: Z—M be the twistor space. Then, to each B,-connection V over M,
we can associate in a unique way an Einstein-Hermitian connection V= ¥V
over Z. Our main result is:

Theorem. The mapping Vi—V natually induces an embedding of the mo-
duli space of B,-connections over M as a totally real submanifold of the moduli
spcae of Einstein-Hermitian connections over Z.

In a forthcoming paper, we shall give a compactification of the moduli
space of Einstein-Hermitian connections for null-correlation bundles on P**+}(C).

In concluding this introduction, I would like to express my sincere gratitude
to Professors H. Ozeki, M. Takeuchi, M. Itoh for valuable suggestions and to
Professor T. Mabuchi for constant encouragement.

1. Notation, conventions and preliminaries

For this section we refer to [6], [7], [8], [9], [10] and [11].
Let N be a compact complex manifold and (F, ;) a Hermitian vector bundle

over N where F is a C* complex vector bundle and %, is a Hermitian metric
on F.
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DerFINITION. A Hermitian connection D on (F, k) is said to be integrable,
if the curvature R® of D is an End(F)-valued (1, 1)-form. An integrable con-
nection D on (F, hg) is said to be srreducible, if the only parallel sections of End
(F) are constant multiples of the identity endomorphism #d of F.

We denote by U(F, k) the group of unitary gauge transformations of (F, k)
and by Ci(F, k) the set of all irreducible integrable connections D on (F, kg).
The set of all equivalence classes in C%(F, hr) modulo U(F, hg) is called the
moduli space of irreducible integrable connections on (F, ), which we denote
by H'(F, k).

Now we assume that N admits a Kihler metric with Kahler form wy. The
mapping L: A?T*N Sy L(p)e A***T*N being defined by L(p)=wAn, we
denote its adjoint operator by A. This induces the mapping

id @ A: End(F, hp) @ A?***T*N — End(F, hs) @ A?T*N .

When a connection D on F is given, R? denotes the curvature tensor of the con-
nection D. Put Ric(D): =+/—1(:d @ A)RP, which is called the Ricci curvature
cf D.

DEerINITION. A Hermitian connection D on (F, k) is called an Einstein-
Hermitian connection if the Ricci curvature Ric(D) of D is a constant multiple
of idg.

Let Cz(F, hr) be the set of all irreducible Einstein-Hermitian connections
on (F, hy). The set of all equivalence classes in C%(F, Ar) modulo the group of
unitary gauge transformations U (F, k) is called the moduli space of irreducible
Einstein-Hermitian connections on (F, &z), which we denote by &'(F, Aj).

Let D be an irreducible integrable connection on (F, kz). Consider the
connection, denoted also by D, on End (F) induced by D. We then have a Dol-
beaut complex

(Ap): 0 — A%(End (F)) — A*(End (F)) —++-—> A**End (F)) — 0
(n = dim¢N) ,

where A*{(End(F)) is the space of all End (F)-valued (0, z)-forms on /N and D”:
A*Y(End (F))—A%*(End(F)) is the (0,7+1) part of the covariant exterior
derivative d®. Recall that the moduli space H'(F, hr) adimts a non-Hausdorff
complex analytic space structure (see [7; (0.2)], [8; Chapter 7, (3.35)] and [10;
(2.7)]). As a neighborhood of the equivalence class <<D> of D, we can take
an open set (centered at 0) of a slice

Sy = {a€ 4" (End(F)); D"aNa =0, D"*a=0}.
For the above Dolbeault complex (4,), we denote by Gy, K and Hy the Green
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operator, the Kuranishi map and the orthogonal projection to the space H(V, Ap)
of all End(F)-valued harmonic 1-forms on NN respectively. Then this open set
of Sy is homeomorphic to an open set of a complex analytic space

Op = {aEINN, Ap); Hy(Ku(et) AKy(cr)) = O} .

Let End(F), be the subbundle {SeEnd (F)|trace (S)=0} of End(F). We then
have the following subcomplex (A4,) of (4p):

(4p): 0 — A*(End(F),) = A*(End (F)s) —-+— A%*(End(F),) = 0
(n = dim¢N) ,

where A%(End (F),) is the space of all End (F),-valued (0, #)-forms on N. De-
note by C# (F, hr) the set of all irreducible integrable connections D on (F, k)
such that the second cohomology of the Dolbeaut complex (4)) vanishes. Then
the quotient space H"(F, hp): =C¥(F, hy)|G(F, hy) is a (possibly non-HausdorfF)
complex manifold (cf. [8]), where G(F, h;) denotes the group of automorphisms
of (F, hy) whose determinant is one at each point.

On the other hand, an irreducible Einstein-Hermitian connection D on
(F, ky) induces a connection on End(F, kz), denoted also by D. We denote by
Af (End(F, hy)) the space of all End(F, hy)-valued i-forms. Then we have the
following elliptic complex (B)) due to Kim [7]:

D D D
(Bp): 0 — AYEnd(F, hp)) = AYEnd(F, hy)) = A%(End(F, hp)) =
4 4

A*End (F, hg)) = ++ = A%"End(F, hg)) = 0,

where A? (End(F, kg)) is the space of all real C* p-forms with values in End
(F, hp), A?YEnd (F, hy)) is the space of C= (p, q)-forms with values in End (F, kz)
and

A%(End(F, hy)) =
AXEnd(F, hy)) N (A2End (F, hy))-+A%End (F, he))+A(End (F, 7)) Q o) -

Moreover D, and D, are defined as D,=p,od? and D,=D"op"% where p, and
p** are natural projections of A?(End(F, ks)) onto A%(End(F, k) and A%?
(End(F, hyp)), respectively. Note that the moduli space & (F, ky) is a Hausdorff
real analytic space (cf. [7], [8] and [10]). We can identify a neighborhood of
<D> in &E(F, hp) with a small open subset (centered at 0) of a slice

Sy = {BE€ A End(F, hy)); D.B+p,(BAB) =0, D*8=0}.

This open subset of Sy is homeomorphic to an open set (centered at 0) of the
real analytic space
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O = {BEY (N, Bp); Hi(K:(B)AKx(B)) = 0} ,

where G, K and Hj are the operators of (B)), corresponding respectively to
the Green operator, the Kuranishi map and the orthogonal projection to the
space 4' (N, Bp) of all End(F, kg)-valued harmonic 1-forms of (Bp). The
moduli space &’ (F, k) is naturally embedded in H’ (F, hz) as an open subset
of H’'(F, he) (cf. [7], [8] and [10]). Let H' (N, Ap) and H! (N, B)) be the i-th
cohomology groups of the complexes (A4p;) and (Bp) respectively. Then
H'(N, Ap)=H" (N, Bp) (cf. [7], [8] and [10]). More precisely, we have

SN, Ap)+ (N, Ap) = H(N, Bp) .

Let (B,) be the subcomplex (B)) consisting of the sections with trace 0, and
let C¥(F, hy) be the set of all irreducible Einstein-Hermitian connections D on
(F, hp) such that the second cohomology of the complex (B)) vanishes. We
denote by &”(F, hy) the quotient space C¥ (F, hy)/(U(F, hy) N G(F, hs)). Then
& (F, hr) has a natural structure of Kihler manifold (cf. [8] and [10]) and is ho-
lomorphically embedded in 4" (F, k) as an open subset.

Let M be a compact quaternionic Kihler manifold and p: Z—M the
associated twistor space. The vector bundle A*T*M over M formed by covec-
tors of degree 2 is expressed as a direct sum of three holonomy invariant vector
subbundles A3, A3’ and B, (cf. [14]). Fix an arbitrary C* vector bundle V
over M. Then a connection D on V is called a B,-connection, if the curvature
R? of D is an End(V)-valued B,-form. We now assume that V' is a complex
vector bundle over M, and choose a Hermitian metric 4, on V. Recall that Z
has a natural real structure, i.e., an involutive antiholomorphic mapping 7: Z—
Z (cf. [11; (2.8)]). Let Cz(V, hy) be the set of all Hermitian B,-connections
on (V, hy) and let Ch(p*V, p*hy) be the set of all integrable connections on
(p*V, p*hy) satisfying the conditions: (a) D is trivial on each fibre p~Y(x) (x& M),
and (b) the connection form associated with D is fixed by the pull-back +*
(for more details aee [11; Introduction]). Then we have the following:

Theorem 1.1 ([11]). The pull-back D p*D of connections induces a
natural bijective correspondence: Cy(V, hy)=Cy(p*V, p*hy). Furthermore, if the
scalar curvature oy of M is positive, then Cy(p*V, p*hy) is the set of all Einstein-
Hermitian connections on (p*V, p*hy) satisfying the conditions (a) and (b).

2. Moduli spaces of Hermitian B,-connections

Let End(V, hy), be the subbundle consisting of S€End(V, k) such that
trace (S§)=0. Let D be a Hermitian B,-connection on (¥, ky). Then D induces
B,-conenction on End(V, %) and End(V, Ay),, which we denote also by D. Us-
ing the B,-connection D on End(V, k), we have an End(V, hy)-valued elliptic
complex Cp={(4',d;), 0<i<2m} (dim M =4m) (cf. [11; (3.5.)]), where A4*
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is the space of all End(V, ky)-valued 1-forms on M. Furthermore, the B,-
connection D on End(V, ky), induces an End(V, hy),-valued ellipic complex
Co=A{(4',d)} (cf. [11; (3.5)]), where in this case 4" is the space of all End
(V, hy)o-valued 1-forms on M. We denote the i-th cohomology groups of C)
and €, by H'(M, Cp) and H'(M, C)) respectively. The spaces of the i-th
harmonic elements for C, and C, are denoted by 4‘(M, Cp) and Ji(M, C,)
respectively.

Now we denote by U(V, hy) the group of unitary gauge transformations of
(V, hy). Let C;(V, hy) be the set of all Hermitian B,-connections D on (V, hy)
such that H°(M, Cp)={0}, namely the set of all irreducible Hermitian B,-
connections on (¥, hy). We denote by B’(V, hy) the quotient space C;(V, hy)/
U(V, hy), which is called the moduli space of irreducible Hermitian B,-connec-
tions on (V,hy). Furthermore, let C¥ (V, hy) be the set of Hermitian B,-
connections D on (V, k) such that H® (M, Cp)=H?*(M, Cp)={0}. We then put
B'(V, hy):=C¥ (V, hy)|U(V, hy). Inthe complex Cp, let Hg: A*— 9*(M, Cp)
be the orthogonal projection to harmonic part and let G5 be the Green operator
for Ag=3",(d;od¥ 1 +d¥od;). Note that id=Hs+GsoAs.

Lemma 2.1. Given a connection D in Cz(V, hy), we denote by @, the set of
forms a€ A* such that dia+n,(a Aa)=0 and dfa=0, where =, denotes the natural
projection of T'(M, End(V, hy) @ N*T*M) onto A*. Then the mapping : ppD o
[D+a]eB' is a homeomorphism of an open neighborhood of the origin in @, to an
open set in B’ around [D].

Proof. This is proved by the same argument as in the proof of the slice
lemma in [7; (1.7)].

The mapping Ks: A'Sar—a+(dFeGsom,) (aNa)eAY, called the Ku-
ranish map of Cp. The restriction of K defines a diffeomorphism between two
small open neighborhoods of the origin on 4'. Let K5’ be its inverse. Then
we have:

Lemma 2.2. Put

&, = {aEﬂl(M, CD); (Hs°”2) (Kg’(a)/\Kgl(a)) =0} .

Then the restriction of the Kuranishi map defines a local homeomorphism between
certain small neighborhoods of the origin of @, and CV),.

We here observe that if H?(M, Cp)={0}, then €V}, is equal to H'(M, C).
Now by Lemmas 2.1 and 2.2, the following theorems follows immediately:

Theorem 2.3. The moduli space B'(V,hy) of irreducible Hermitian B,
connections has a natural real analytic structure.

Theorem 2.4. The quotient space B”’(V, hy) is a smooth manifold. The
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dimension of the connected component containing [D] is dimgH'(M, Cp). Moreover,
by identifying the tangent space Tin B’ (V,hy) with (M, Cp), the L’-inner
product of H*(M, Cp) defines a Riemannian metric on B"(V, hy).

Theorems 2.3 and 2.4 are valid also for the case where the holonomy group
of connections is a closed subgroup of SO(r) or U(r). Furthermore, by the same
argument as in Kim [7], it is easily checked that both the spaces B'(V, hy) and
B'(V, hy) are Hausdorff.

3. Bjy-connections and Einstein-Hermitian connections

From now on, we fix a compact connected quaternionic Kihler manifold M
and a Hermitian vector bundle (V, hy) over M. In the subsequent sections we
use the notations introduced in Section 2. We prove the following:

Theorem 3.1. If M has positive scalar curvature, B’ (V, hy) is embedded
in & (p*V, p*hy) as a totally real submanifold.

Given a Hermitian connection D on (V, ky), we denote by p*D the pull-back
of D by p.

Lemma 3.2. If DeCy(V,hy) is irreducible, then so is p*DeCh
(p*V, p*hy). In particular, if the scalar curvature oy of M is positive, then we
have p*(C3(V, by)) CCE(p*V, p*hy), where p*(C3(V, hy)):={p*D|D<Cs(V, hy)}
(cf. Theorem 1.1).

Proof. Fix an arbitrary DEC%(V, hy) and suppose that (p*D)§=0 for
some §EI'(Z, p* End(V, hy)). Let (v,, -+, v,) be a local unitary frame for
(V. hy) over an open set U of M. Let w=(w;;) be the connection form of D
defined by Dv;=3}i.1v;0;;. Then by setting #;:=p*r;, we can express §
as §=X)1i ;< 8i; 0;@DF. In terms of the frame (9, -, ?,), the assumption
(p*D)s=0 is written as

O (d8i))+[p*, (3:;)] = 0.

By (1), the restriction of the form d3;; to each fibre of p is zero, which means that
the function §;; is constant along the fibres of p. Hence there exists a global
section s&I'(M, End(V, hy)) such that p*s=5§. By the irreducibility of D, s is
a constant multiple of idy,. Thus § is a constant multiple of id,+,, as required.

Lemma 3.3. Let D, D,&Cy(V,hy). Then [D,]=[D,] if and only if
{p*D>=<Lp*D,>, where [D,] (resp. <D,>) (a=1, 2) denotes the equivalence class
of D, (resp. D,) modulo the unitary gauge groups on (V, hy) (resp. (p*V, p*hy)).

Proof. It suffices to show [D,]=[D,] when {p*D>=<p*D,>. 1In this case,
there exists a gauge transformation g for (p*V, p*h,) such that p*D,=g-p*D,.
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Let (vy, -**, v,) be a local unitary frame for (V, hy). Each D,(a=1, 2) defines
the connection form o™ =(0f;),<i,j<, by Dov;=27-1v; 0f;. Write § as 31 <,
5:; 0,Q0F, where 9,=p*v,, 1<k<r. Then the condition p*D,=g.p*D, is
locally expressed in the form

) PV = p*e®+G1dG,

where G denotes the 7 X7 matrix (g;;). From (3.3.1) the restriction of dG to
each fibre of p is zero, and so every g, is constant along the fibres of p. Hence,
there exists a gauge transformation g for (V, ky) such that g=p*g. Thus D,=
&+ D, ie., [D]=[D,].

Theorem 3.4. The mapping p*: Cy(V, hy)—Cu(p*V, p*hy), induced from
the projection p: Z — M, gives rise to an injection: B'(V, hy)—H'(p*V, p*hy) (which
1s also denoted by p*.)

Proof. This follows immediately from Lemmas 3.2 and 3.3.

ReMaRrk 3.5. If 0,,>0, then the image of p*: B'(V, hy)—>H' (p*V, p*hy)
is contained in &’ (p*V, p*hy) (cf. Theorem 1.1).

We denote by (Cp)® the complexification of the elliptic complex (Cp). Then
by Carpia and Salamon [4; Theorem 3] the i-th cohomology group of the com-
plex (C,)€ on M is embedded, via p*, as a subgroup in the corresponding co-
homology group of the Dolbeault complex (4,,) on Z, and this embedding is
an isomorphism for >1. It follows the following:

Corollary 3.6. The mapping p* maps C¥ (V, hy) to C¥ (p*V, p*hy) injec-
tively. Moreover, this mapping induces an injection: B’ (V, hy)—I" (p*V, p*hy)
(denoted also by p*). In particular, if o,>0, the image of B"(V, hy) under the
injection p*: B’ (V, hy)— A" (p*V, p*hy) is contained in E” (p*V, p*hy).

Since p*V is trivial on each fibre of p: Z—M, = induces a bundle auto-
morphism 7*: p*V'— p*V such that the following diagram is commutative:
-
PV —— p*V
! y

rd

zZ — Z.

Let Cy(p*V, p*hy) be the set of all Hermitian integrable connections on
(p*V, p*hy). Then the bundle automorphism 7* induces the mapping # defined
as follows:

Cx(p*V, p*hy) DD — #(D): = toDortcCyx(p*V, p*hy) .

We shall now write # explicitly in terms of local frames. Choose an open
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cover {U,} of M with a local unitary frame (2%, -+, v7) for (V, hy) over U,.
Then {p~Y(U,)} is an open cover of Z with local unitary frame (p*of, --+, p*o7)
for (p*V, p*hy) over p™(U,). Given a Hermitian integrable connection D on
(p*V, p*hy), we denote by (?;) the connection form for D on p~}(U,) with res-
pect to the frame (p*of, ---, p*o%), (i.e, D(p*v3)=3](p*v}) 0?;). Then (r*wf;)
is just the connection form for #(D) with respect to the same frame on p~*(U,).
Since 7 is antiholomorphic, # (D) is also integrable. Note that if D is irreducible,
then #(D) is also irreducible, and that D is fixed by # if and only if D satisfies
the condition (b) in Section 1. Hence, by #*=1d, the mapping # is a bijection of
Cu(p*V, p*hy) onto itself. Since 7 is an isometry of Z, the same argument is
applied also to C% (p*V, p*hy). Given a unitary transformation &€ U (p*V, p*hy)
and an integrable connection DEC4(p*V, p*hy), we have the identity

5-#(D) = #(s’-D),
where s': =7*.5o7*. Hence, # naturally induces a bijection of the moduli space
' (p*V, p*hy) onto itself, denoted by 7': ' (p*V, p*hy)—'(p*V, p*hy), and
the restriction of 7" to &’ gives a bijection of &’ onto itself (denoted also by 7':
E'(p*V, p*hy)—E' (p*V, p*hy)). Recall that the complex structure of Z induces
those of J'(p*V, p*hy) and &'(p*V, p*hy). Since 7 is antiholomorphic, we
have

Theorem 3.7. Both the mappings
' A (p*V, prhy)— ' (p*V, p*hy) and
7't E'(p*V, p*hy) — &' (p*V, p¥hy)
are anttholomorphic bijection. Therefore v defines real structures of ' (p*V, p*hy)
and E' (p*V, p*h).

Given an integrable connection D on (p*V, p*hy,), we obtain the elliptic
complex (A;)) from the complex 7%#(A4p) by taking complex conjugation.
Similarly, for any Einstein-Hermitian connection D, we obtain (Bz)) from
7%(B5) by complex conjugation. Hence the restrictions of the bijections

' G (p*V, p*hy) — H' (p*V, p*hy) and
't &PV, prhy) — &' (p*V, p¥hy)

on A" (p*V, p*hy) and E”(p*V, p*hy) define the bijections

s (DAY, phy) — S (PFV, p¥hy) and
7' & (PFV, prhy) — & (p*V, p*hy)

respectively. The Kahler metric of &7(p*V, p*hy) is defined by the L?-inner
product on 4*(Z, B3), which identified with the tangent space of &”(p*V, p*hy)
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at {D>. Since 7 is isometry on Z, the real structure 7”’: &”(p*V, p*hy,)—>E"
(p*V, p*hy) is an isometry.
Now we fix an arbitrary element D of p*(C5(V, ky)). Put

ng(@) = Hy(Kz' (@) AKz'(a)) for acH'(Z, As), and
76(8) = Hy(K5' (B)AKF'(B)) for BeH'(Z, Bs).

Since D is fixed by # (cf. Section 1) we immediately obtain:

) 1a(T¥et) = T*na(a) , a€ I Z, 4p),
(4) 7e(7*p) = m*n:(8), BEIHZ, B) .

Let (J'(0*V, 2 (E(0*V, 0 (I (O*V, ¥h)ms (E”(P*V, 0¥
be the subsets of H'(p*V, p*hy), E'(p*V, p*hy), A" (p*V, p*hy), E”(p*V, p*hy),
respectively consisting of all elements fixed by the real structures defined above.
Then by Theorem 1.1, p*(B'(V, hy)) is embedded in (E'(p*V, p*hy))r (C(IH’
(P*V, p*hy))g) and p*(B"(V, k) C(E"(P*V, ¥hy))m (C(H" (P, p*hr)))-

4. Proof of Theorem 3.1

Let g, denote the g,ven metric on M and let g, denote the induced metric
by gy on Z. Then g,:=g,—p*g) is an indefinite metric which is positive
definite on each fibre of the submersion p: (Z, g;)—>(M, gu). Let J, be the
complex structure on Z. We define a 2-form wy on Z by

oy, 0,): = gy(v, J20,), v, 0,ETZ (€Z).

Recall that Salamon [14; p. 144] introduced (locally defined) vector bundles H
and E on M such that the complexification T*M¢ of the cotangent bundle 7*M
is nothing but HQ¢E. Let (hy, h,) and (e, -+, €,,) be symplectic local frames
of H and E respectively, and (2%, 2%) the dual coordinate of H. (We follow [11;
(3.2.2)] for definition of symplectic frames.) Moreover H and E have natural
connections induced by Riemannian connection of M (cf. [14]). Let (w}) be the
connection form on H with respect to the frame (ky, 4,). Then wy, is written as
c(|2'|24+1)"20 A8, where 0:=dz'+2' p*wi+p*wi—(2') p*wi—32' p*w; and ¢ is
a constant depending only on the scalar curvature of M and the dimension of M
(cf. [14] for more details).
Then we have

Lemma 4.1. Put

w; = (|22 41)7%(2" p*(e; @) +p*(e:®hy)) (1=i<2m), and
0y = (12°+1)714 .

Then we have
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doy = —2¢(37-y ui/\um+1/\gV+ai/\um+1/\€V) .

Proof. dwy = c{—2(|2'|*+1)"(='dZ"+2'd=") NG\ O
+(12' 24 1) "% (d2' A p*wi +2* pFdoi+p*dws —22'd2" A pFei—(2') p*dw]
—d3' A\ p*wi—2' p*dwl) \O—
(12124 1)"2 0 A(—dZ A\ p*oi—2' p*dwi+27' dZ' A p*ei+(2') p*dws+dZ' N p*w)
+2! p*dwi)}
= ¢( |2'[24+1)2{2! p*(dwi +wi A })+p*(dws + o1 Aws+os A o)
— (') p*(dewi+0i A wi+ ol Awl)—2' p*(dwi+of Aws)} AO
+c(12' P4+ 1)2 O A {2 p*(doi ol Awl)+p*(dot+ol Aol +of Aol)
— (') p*(dwi+ i Aws+ws Aws)—Z' p*(dw;+ ol Awb)} .

We denote by (Q) the curvature form of the vector bundle H with respect
to (hy, hy):

Q} = doj+ 31 0i Ao} .
We have the following formula due to Salamon [14; Proposition 3.2].
\Q% = ._1((8 ®h1)/\(em+z®hz)+(8 ®h2)/\(em+'®hl))
Qi = _22'—1((ei®h2)/\(em+i®hz)) ,

Qz = 221-1((e£®h1)/\(em+i®hl)) ’
2:-1 (3i®h2)/\(em—i®h1)+(ei®h1)/\(em+i®h2)) .

Using this we get:
doy = (| Z'|2+1)"2{(z! p*Ql +p* Q3 — (')’ p*Qi—2' p*QI) A+
(' p*Qi+p*Q1—(Z') p*Qi—Z' p*Q3) A 6}
= —20(Per(i A ey s AOy +8; AR, \OY))

which proves Lemma 4.1.

Let D be a Hermitian B,-connection on (V, k) on M. Then we have a
morphism g between the complexes (Cp) and (4,+p) defined as follows:

C(End(V, hy))2d > (pr®?op*) (d)€ 4 (End (p*V)),

where pr@é): T(Z, End (p*V)Qc A T*Z)—>T(Z, End (p*V)Qc AP T*Z) is the
natural projection. Let 9” and 9; be the formal adjoint of (*D)” and d; in
the complexes A+, and C), respectively. Then we obtain:

Lemma 4.2. Denoting by *,, and *, the star operators for vector bundles on
M and Z, we have
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g = q(Di-, v)—(kz0pr®™12Mos ) v A (—2¢ 301 s Athyyr; AOy)
for all v C(End(V, hy)).

Proof. Write the volume forms on M and Z as dv, and dv, respectively.
Then dv,=p*(dvy)Awy. Hence, for any ve C{(End(V, hy)),

D'qu = —(z0(d""P) 0% z09) (9)= —(#z0(d*"P) 0% zopr®Vop*) (2)
— —(xo(872) oprmTIH) (p¥ () Aa)
= —(¥z0(d")") (P~ (#40)) A woy)
= —¥, {(dp*b)' ((Pr(zm—i.ZM)(P*(*Mv)))/\wv)_'_Pr(zmi,zm)(P*(*Mv))/\d,wy)
= —xz{(pr® M (pX(@P(+u0)) Aoy —(prem 2 (p* () Ad oy}
= —prOH((p*oxuodPory)v) =z {(pr" M (p*(xuv)) Ad'wy} -
By using Lemma 4.1, it follows:
@/,qv = —qD;_, v—(*z0pr®" 2 Mosky) 9 A (—2¢ Ty 1; Athyy; Ay)
which proves Lemma 4.2.

In view of Lemma 4.2, we have q(HYM, Cp)CHNZ, App). From [4;
Theorem 3], it follows that dimgH'(Z, App)=dimeH (M, (Cp)€)=dimp*
(M, Cp). Together with the argument used by Kim [7; (1.3)], we have '
(Z, Ayp)+FNZ, App)=(HYZ, Bpp))°. Hence

(1) P*ﬂl(M: CD)—}"]ZP*‘%I(Mv CD) = ‘-g{l(Z) Bp*D) .

The tangent space of B'(V, hy) at [D] is H'(M, Cp) and the tangent space
of &"(p*V, p*hy) at {p*D)> is HNZ, Byp). By (1), B’(V, hy) is of dimension
dimg A (M, Cy) at [ D], which is equal to the complex dimension of &”(p*V, p*hy)
at {p*D>.

RemARrks. Capria and Salamon [4] constructed interesting families of B,-
connections for some vector bundles over P"H. In a forthcoming paper [12],
as an application of Theorem 3.1, we shall clarify the relationship between such
families of B,-connections and the moduli space of Einstein-Hermitian connec-
tions on null-correlation bundles over odd dimensional complex projective
spaces.
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