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I. General Introduction

1-1. Historical Survey of Dielectric Studies of Polymers

Dielectric spectroscopy has long been used as a powerful tool for studying
stereochemical structure and dynamics of polar molecules.!-3 Before various
modern techniques of analyses such as nuclear magnetic resonance (NMR) were
developed, the dipole moment was one of key information for determination of
molecular structure of low molecular weight compounds. From the static dielectric
constant the molecular polarization was determined with the Clausius-Mossoti
equation and was compared with theoretical polarizations derived for possible
chemical structures.! Frequency dependence of the complex dielectric constant
provides another important information on the rotational diffusion of polar
molecules. Debye? proposed a theory of dielectric relaxation in 1929, and since
then the dielectric method has been one of the most reliable methods for determining
the orientational relaxation time of polar molecules. At present, a variety of
sophisticated techniques such as NMR,3 electron spin resonance (ESR),® dynamic
light scattering,’ and fluorescence depolarization® are available for studying
molecular dynamics. However, the dielectric spectroscopy is still a unique method
in the sense that it provides us with direct information on the orientation of the
molecules.

The dielectric spectroscopy also played an important role in studying the
structure and dynamics of polymer molecules.® 12 For understanding the dielectric
properties of polymers, it is important to specify how and in what direction the
monomer dipoles are attached to the chain backbone. Stockmayer classified
polymer dipoles into three major types.? The component of monomer dipoles
aligned in the same direction parallel to the chain contour are referred to as type-A,
those perpendicular to the chain contour as type-B, and those on flexible side

groups as type-C, as schematically depicted in Figure I-1. Although W.Kuhn!3



already noted the features of type-A polymers in 1950, Stockmayer pointed out that
the dipole moment P of a totally type-A chain is directly proportional to the end-to-

end vector r of the chain:
P=yur (I-1)

where u is the dipole moment per unit contour length of the chain. Thus the
dielectric relaxation of type-A dipoles reflects fluctuation and orientation of the end-
to-end vector and consequently the global motion of the chain prevailing in
viscoelastic terminal relaxation.?-10.14.15 n addition to the dynamical features, the
dielectric relaxation of a type-A chain provides information on the mean square end-
to-end distance <r2> of the chain, being proportional to the relaxation strength Ae.
Such a relaxation process was thus designated as "dielectric normal mode

process” .16

On the other hand, relaxation of type-B dipoles reflects local
segmental motion relevant to the glass transition, while that of type-C dipoles
reflects local motion within the side groups responsible to high frequency modes at
sub-Tg temperature, if the polymer molecules considered possess such components.
Usually these two types of dipole moments contribute to multiple-relaxation

phenomena often designated as o, B, v, erc. relaxation modes from the high

temperature side.!!

Type-A Type-B Type-C

Figure I-1. Stockmayer's classification of polymer dipole moments.



Before Stockmayer's classification of the polymer dipoles, the dielectric
relaxation of type-B dipoles was the main subject of concern of many scientists,
among whom Kirkwood and Fuoss!7:18 were the pioneer. They recognized that the
dielectric relaxation spectrum of a type-B polymer is much broader than those of
simple polar molecules. They called such a relaxation the anomalous relaxation,
which was often referred to as the primary o process or the segmental mode process
and was empirically expressed by the Kohlraush-Williams-Watts equation!?-20
and/or the Haviriliak-Negami equation.2! However, these empirical equations have
not yet been explained theoretically in a satisfactory manner.

Although many studies on type-B and type-C polymers were reported by
early 1960's, those on type-A polymers had not been explored until Stockmayer?
pointed out their significance in 1967. A pioneering theoretical study of the
dielectric relaxation of type-A chains was first reported by W. Kuhn!? in as early as
1950, but the theoretical development of this normal mode relaxation had to wait the
advent of a molecular model describing global motion of a flexible polymer chain.
The bead-spring model proposed by Rouse?? in 1953 provided a clear picture of the
molecular motion related to the viscoelastic relaxation of an isolated and/or
unentangled flexible polymer chain. On the basis of this bead-spring model,
Zimm?23 presented a theory of viscoelastic and dielectric relaxations of a type-A
chain with incorporating hydrodynamic interactions between beads. Van Beek and
Hermans also developed a theory of the normal mode relaxation.?4 These theories
were further developed by Stockmayer and Baur in 1964.25

Although the bead-spring model successfully explained viscoelastic and
dielectric relaxation behavior of non-entangled chains, it failed to explain the
behavior of entangled chains. The reptation model proposed by de Gennes2%:27 in
1971 and developed by Doi and Edwards?8:2% provided a clear picture on the
dynamics of entangled chains, predicting the dielectric normal mode process as

well.



Experimental studies on the dielectric relaxation of type-A polymers were also

3032 Baur and Stockmayer3? first reported

initiated by Stockmayer and coworkers.
an experimental study on bulk poly(propylene oxide) (PPO) which has both type-A
and type-B dipoles. They observed a small side peak (due to the type-A dipoles)
on the low frequency side of the main dielectric loss (¢”) peak due to the type-B
dipoles. Because the type-A component of PPO was much smaller than the type-B
component, their dielectric data were not clear enough to investigate detailed aspects
of the normal mode relaxation, e.g., the shape of the dielectric loss (&") curve
reflecting the relaxation-mode distribution and/or the relaxation strength A€
reflecting the mean square end-to-distance <r2> of the chain.

Then Jones et al.3? studied dielectric relaxations of benzene and dioxane
solutions of high molecular weight poly(e-caprolactone) (PCL) which also
possesses both type-A and type-B dipoles. They found that dilute PCL solutions
exhibited a clear £” peak due to the normal mode, and discussed the relaxation time
determined as the reciprocal of the £” peak angular frequency. The relaxation time
data were well explained by the Rouse-Zimm theory.22:23

Dielectric studies of cis-polyisoprene (PI), initiated by Adachi and Kotaka33,
gave a breakthrough in the study of entangled polymer systems. High cis-content
PI also has both type-A and type-B dipoles. PI samples with narrow molecular
weight distribution can be relatively easily prepared over a wide range of molecular
weight via anionic living polymerization. Since this polymer is essentially
nonpolar, it is easily freed from moisture and ionic contaminants which are always
hazards in carrying out low-frequency dielectric measurements indispensable for the
dielectric normal mode study of entangled systems. Because of these advantages of
PI samples, Adachi and Kotaka were able to observe very clear €” curves due to the
normal modes over wide ranges of concentration and molecular weight. Thus
detailed investigation of the polymer chain conformation and dynamics of the global

motion became possible.



I-2. Background: Overview of Studies on Dimensions and Dynamics of
Flexible Chain Polymers

I-2-1. Polymer Chain Dimensions

In the previous section, we emphasized that dielectric studies on type-A
chains will provide us with fruitful information on the chain conformation as well
as the dynamics of the global motion of the chain. In this section, we briefly
review the current status of studies on polymer chain conformation covering from
dilute solution to the bulk state.

Since Staudinger established the concept of macromolecules in the 1930's,
much work has been done on dilute solution properties of polymers to determine the
molecular characteristics and conformation of the dissolved macromolecules.34:33
However, studies on concentrated solutions and bulk polymers were started only
about 20 years ago after the advent of powerful scattering techniques including
small angle neutron scattering (SANS). The behavior of polymer chains in solution
may be divided into three categories: the dilute, semidilute, and concentrated
regimes, according to the change in polymer concentration C.27 These three
regimes are schematically illustrated in Figure 1-2. The dilute solution regime is
defined as the region of C where polymer coils do not overlap. With increasing C,
the polymer chains begin to overlap as C reaches a critical concentration called
overlapping concentration C* expressed by

. iM

C = (I-2)
4 m N ,<§2>32

where M is the molecular weight of the polymer; N ,, the Avogadro constant; <8§2>,
the mean-square radius of gyration.?” The semidilute region is defined as the
region where the polymer chains overlap one another but C is still not high enough
so that the segment density is not uniform throughout the solution. In this region

the segment density fluctuation plays an important role in the thermodynamic and

-5-



dynamic behavior of the polymer chains. In the concentrated regime, on the other
hand, the segment density fluctuation is negligible and a mean field theory may be
applicable. Generally the concentration C** representing the transition from the
semidilute-to-concentrated region does not depend on the molecular weight but

depends on the chemical nature of the polymer species involved.

Dilute Semidilute Concentrated

Figure I-2. Schematic representation of the classification of polymer

solutions.



Numerous studies on chain dimensions in dilute solution have been made by
several techniques: light scattering, small angle X ray scattering (SAXS), and
intrinsic viscosity measurements. The dependence of the mean-square radius of

gyration <§2> of a chain on the degree of polymerization N can be summarized as
<S2> o N2V (I-3)

where the excluded volume exponent v varies with solvent quality from 0.5 in a
theta solvent to 0.6 in an extremely good solvent. Monomer-monomer interactions
in the latter solvent are predominantly repulsive, and due to this intra-chain
excluded volume effect, the polymer coil is swollen to a dimension larger than the
unperturbed Gaussian dimension with v = 0.5. Flory first treated the excluded-
volume problem in a mean-field approximation and predicted v = 0.6 at the
extremely good solvent limit.34:36 A later renormalization group calculation gave v
= 0.588+0.001,37 supporting the Flory exponent.

In a semidilute solution of a good solvent, the intra-chain excluded volume
effect is supposed to be partially screened by inter-chain interactions. Thu‘s with
increasing C the dimensions of a polymer chain may decrease. Such concentration
dependence of chain dimensions in semidilute solution was investigated by Daoud et
ar.38 and King et al*® with SANS on deuterated polystyrene. Their results
indicated that <S2> decreased in proportion to C ~1/4.

Daoud and Jannink developed a scaling theory*® and calculated the mean
square end-to-end distance <r?> using a model composed of freely jointed blobs in
each of which the excluded volume effect is exerted but between which the excluded
volume effect is screened. This scaling theory predicted the C dependence of <r>

as:

<r?> o NC (2v-DI(-3v) (1-4)



For v =0.6, the exponent to C becomes -1/4 in agreement with the experiments, if
<r2> and <S2> possess the same scaling exponent. With further increase in C, the
screening effect on the excluded volumes becomes intense, and thus <§2%> and
likewise <r?> of the polymer chain should decrease to the unperturbed values.

The scattering methods to determine <S2> mentioned above have been well
established during the past few decades.*! However, there were no techniques
available to determine <r2> directly until the dielectric normal mode method was
established and actually applied to PI and other type-A polymers by Adachi and
coworkers.42 For quantitative evaluation of <r?> by the dielectric method, however
there still remained a crucial problem of determining ¢ in eq I-1 for the polymers to
be examined; the value of g must be dependent on the detailed stereochemical
structure of the monomer unit and the polymer chain. In a later section we will
fully discuss this problem, subdividing type-A polymers into several additional
classes according to their detailed structure.

Another important problem in determining <r?> is to define the ratio F of the
internal-to-external electric field effective for the dielectric normal mode process.
For the segmental and local mode processes, there are already several fields
established: the Lorentz cavity field and the Onsager reaction field, for example.!
For the normal mode process, Adachi proposed the vacuum field of F =1 to be

42,43

good enough. We will reexamine this proposal.

1-2-2. Polymer Chain Dynamics

Dynamics of a flexible polymer chain has also been one of the central
problems in polymer physics in the past few decades and extensively studied both
experimentally and theoretically by many authors.’9-28.29 [nfinitely dilute
solution is perhaps one of the simplest model systems for examining the dynamical
features of an isolated chain. As mentioned in the previous section, the bead-

23

spring model proposed by Rouse?? and Zimm?3 was the starting point. Although

there are only a few sets of experimental data on dilute solutions available,



datal4-44 of the intrinsic complex moduli [G*], for example, were very well
explained by these models, especially better by the Zimm theory?3 rather than the
Rouse theory.??

In the range of C* < C < 10C” the effect of chain overlapping appears to
cause the distribution of viscoelastic relaxation times to approach that of the Rouse
model.14-44:45 This phenomenon was recognized theoretically as a result of
shielding effect of hydrodynamic interactions among beads. With further increase
in C , entanglement effect causes the appearance of the rubbery plateau region in the
stress-relaxation moduli G(r) and storage moduli G, if M > M /¢ where M, is the
entanglement molecular weight specific to the polymer species in the bulk state; and
¢, the volume fraction of the polymer. The longest relaxation time becomes
proportional to M3-4 for systems with M >M /¢ in this entangled region where M is
the characteristic molecular weight, another parameter specific to the polymer in the
bulk state.

Experimental studies of polymer melts and concentrated solutions have a
much longer history than those of dilute and/or semidilute solutions. 14 The M
dependencies of zero shear viscosity 7, and steady state compliance Jeo are
expressed as ngo<M 33737 and J 0M O, if M > M and M > M, respectively,
where M ' is still another characteristic molecular weight, representing
entanglement effect.

Interpretation of these intriguing results of highly entangled polymer systems
has also been a long-lasting but yet-unsettled problem in polymer rheology. In
1971 de Gennes?% proposed an in.tuitive model called reptation model to explain the
motion of a polymer chain trapped in a crosslinked network. In 1978 Doi and
Edwards2® extended de Gennes' idea to describe viscoelastic behavior of entangled
polymer systems. The model called tube model assumes that the topological
constraint to a test chain by its surrounding chains is represented as a fixed tube, in

which the test chain can move only along its contour. When a part of the chain gets



out of the tube, it loses the conformational memory acquired at time z = 0. The
time necessary for the whole chain gets out from the tube (tube disengagement time
Ty corresponds to the longest relaxation time. The tube model predicts that both
Ny and 7,4 are proportional to M3-9) but this does not agree with the empirical 3.4
power law. Recently the discrepancy was explained with two modified tube
models, one considering contour-length fluctuation of the test chain within the
tube?® and the other, constraint release mechanisms via tube reorganization.47.48
The dynamical features of the two extreme cases, dilute solution and
entangled melt, are at least semiquantitatively explained by the Rouse-Zimm model
and the modified tube models, respectively. In the semidilute regime the chain
dynamics is governed by both hydrodynamic and topological interactions (the
entanglement effect). Thus the semidilute solution has a nature possessing these
two dynamical interactions. Dynamical scaling theory explained roughly the
crossovers from dilute-to-semidilute and semidilute-to-concentrated regimes in the

C dependence of the viscoelastic behavior.49-33

I-3. Objectives and Scope of this Thesis

The objectives of this thesis are to clarify the static and dynamical behavior
of flexible polymer chains under different surroundings such as dilute and
semidilute solutions, unentangled and entangled melts and blends through the
dielectric normal mode spectroscopy of cis-polyisoprene (PI) and poly(lactone)s.
Although the qualitative features of the polymer dynamics have so far been
reasonably well understood over the whole range of C and M, there still remain
many unsolved problems. This thesis intends to solve some of these problems. It
consists of seven chapters including this introductory chapter.

Chapter II summarizes the theoretical background of dielectric relaxation of a
type-A chain. As already noted, the classification of polymer dipoles by

Stockmayer is not sufficient for detailed analyses of the dielectric behavior of the

-10-



existing type-A chains. Thus we will further classify type-A chains into three sub-
types according to their molecular structure. Then the relationship between their
dielectric polarization and <r2> will be discussed. The effect of internal field will
also be discussed with regard to the dynamical behavior. The basic principle and
the methods for determining type-A dipole moments from the dielectric relaxation
strengths of such type-A chains are described.

Chapter III summarizes the methods employed in this study for preparation
and characterization of PI samples including dipole-inverted PIs and also of two
poly(lactone)s, poly(e-caprolactone) (PCL) and poly(8-varerolactone) (PVL). The
principles and procedures of various experimental techniques are also described.

Chapter 1V is concerned with the static behavior of PI and two poly(lactone)s
investigated by the dielectric normal mode spectroscopy. As described above there
exist few data of <r?>. Therefore we carefully test the reliability of the method
employed here to determine <r2> from dielectric measurements of particular type-A
chains. First the values of <r2> and its expansion factor & determined on
solutions of PI and poly(lactone)s are presented. Then this method is extended to
measurement of <r2> of a probe PI chain in semidilute polybutadiene (PB)
solutions. Our interest is to examine the dependence of <r?> of the test PI chains
on PB concentration and molecular weight in dilute and semidilute regimes. The
results are compared with the current scaling theory developed for polymer/polymer/
solvent ternary solutions.

In Chapter V, the dynamic behavior of the systems described in Chapter IV
are discussed. First we calculate dielectric relaxation spectra on the bases of the
bead-spring and tube models. As is well known, any versions of the tube model
cannot predict correct (viscoelastic) relaxation time spectra: The observed ones are
usually broader than the theoretical ones. We then discuss changes of dielectric
relaxation time spectra induced by changes in surroundings, namely, from dilute to

semidilute solutions and from unentangled to entangled melts and blends. We also

-11-



discuss the universality of the global chain dynamics of chemically different
polymer species reflected in the relaxation time spectra.

In Chapter VI the results of dielectric measurements on dipole-inverted PI
chains are described. The objective of this chapter is to directly determine the
eigenfunctions of the local correlation function of a flexible chain in dilute solution
as well as in melt. In fact, the eigenfunctions determine the viscoelastic as well as
the dielectric relaxation mode distributions. On the basis of this information,
possible origins of the spectrum change described in Chapter IV are discussed in
detail.

Finally Chapter VII summarizes the main results obtained, the conclusions

derived therefrom, and some remarks for future work.
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I1. Theories of Dielectric Relaxation of Type-A Polymers

II-1.Introduction
In this chapter we describe the theoretical background of the dielectric normal
mode process. As described in Chapter I, the total type-A dipole moment P, of a

polymer chain is proportional to the end-to-end vector 7.
P,=pur (II-1)

where 4 is a constant corresponding to the dipole moment per unit contour length.
As described later, <PA2> is determined by measurements of the dielectric
relaxation strength Ag for the normal mode process. If the value of u is known the
absolute value of <r2> may be determined from the data of Ae. Therefore it is
important to determine y from the chemical structure of the monomeric unit. For
this purpose, it is necessary to clarify the relation between P, and the chemical
structure. Generally a chain in which there are neither symmetry elements of
inversion nor mirror image belongs to type-A. Thus in the following section, we
first classify the type-A polymers. Then the relationship between <PA2> and the
chemical structure of the type-A chain is discussed. Finally the basic relationship

between the complex dielectric constant £€* and P, is described.

11-2. Classification of Type-A Polymers

Examining the chemical structure of type-A polymers, we find that actual
type-A polymers are classified at least into three types. Schematic representations
of them are shown in Figure II-1, in which the arrows indicate polar bonds and the
lines nonpolar bonds. Here it is noted that "bond" means either a covalent bond or
a virtual bond composed of a rigid chemical group such as benzene ring and -C=C-
double bond. Type-Al is a pure type-A corresponding to the original Stockmayer

model.! Type-A2 chains are an alternating copolymer composed of polar and non-
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polar bonds, while type-A3 chains are composed of more than two kinds of parallel

dipoles and non-polar bonds.

Type-Al Type-A2 Type-A3

Figure II-1. Further classification of Type-A chain.

For an ideal type-A1l chain such as drawn in Fig.II-1, u is exactly given by p/b
where p is the bond dipole moment and b the bond length. But for type-A2 and A3
polymer chains, p is given by an statistical average over all conformations in a

certain sub-chain unit of a polymer, and eq.1I-1 may be approximately rewritten as

P,=<u>r (I1-2)
where <---> jndicates the ensemble average.

Examples of type-Al to A3 polymers are shown in Figure II-2. Poly(2,6-
disubstituted-1,4-phenylene oxide) (PPhO) shown in Fig.II-2(a) is a typical type-
Al polymer. The virtual bond connecting the two oxygen atoms is rigid and has a
dipole moment parallel to this axis. Similarly, poly(substituted acetylene)s
-(CX=CH),- and poly(alkyl phosphazene)s are type-Al polymers. For these
polymers, u can be calculated explicitly if the dipole vector of the monomer unit is
known. A typical A2 polymer is cis-polyisoprene (PI). As shown in Figure II-
2(b), this polymer consists of alternating links of the virtual bond -C(CH,)=CH-
having type-A dipole moment and -CH,-CH,- non-polar bond. Poly(lactone)s and
poly(lactam)s are also typical type-A2 polymers. In these polymers the ester and
amide groups are rigid and form virtual bonds. We note that these polymers
possess several non-polar bonds in contrast to PI. Poly(propylene-oxide) belongs

to type-A3.
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(a) Type-Al

R, AR .
— 1
o Yool -
Nz >ie 20N P=N
1 C R R n
Ry n R 2
poly(2,6 disubstituted-1,4 phenylene-oxide) polyacetylene Poly(alkyl phosphazene)
(b) Type-A2
T
CHs, H O« N
e (CHJ, [,cr (CHy, ¢ T(CHx
2 n 0 n 0] n
cis-polyisoprene poly(lactone) poly(lactam)
(c) Type-A3
=
CH O
CH2 n

poly(propylene-oxide)

Figure II-2. Examples of Type-Al to A3 polymers.
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However, even if a polymer is not intrinsic type-A, it could possess a type-A
dipole and we may call it a form type-A polymer. For example, poly(alkyl
isocyanate) having the structure —[(NR)-(CO)] — is obviously not intrinsic type-
A, but this polymer behaves as a type-A polymer by taking a helical structure in
which the type-B dipoles due to the N-R and C=0 groups align in the direction
parallel to the helix axis. Alkene-sulfur dioxide alternating copolymers (poly(1-
alkene sulfones)) are other examples of this type. In this thesis, however, we do

not review such exceptional cases.

II-3. Calculation of Type-A Dipole Moment per Unit Contour Length

1I-3-1. Separation of Polymer Dipole into Type-A and Type-B Components

For polymers having the component of type-B dipole, the total dipole vector

P is written as:

P =P, + Py =<u>r + Py (11-3)

where Py is the dipole vector due to the type-B component. For the estimation of
<u> from the polymer chemical structure, it is necessary to separate the type-A and
-B components. Since the head and tail of a type-B chain are indistinguishable,

there exist two conformations 1 and 2 which are completely symmetrical. 23
Py(l)-r(l) = -Pg(2)-r(2) (11-4)

Since the states of 1 and 2 occur with the same probability, the averaged quantities

<Pg-r>and <Py-r/ r2> become zero. Thus eq II-3 leads to
<u>=<Pr/ri> (11-5)

For all type-A2 chains this formula is applicable.

-18-



As described above, most polymers possess type-B or type-C components.
In an actual experiment, we can separately observe the dielectric response of the
type-A dipoles, since the relaxations of type-B or -C dipoles occur in much higher
frequency (or shorter time) ranges than that of type-A dipoles.*

II-3-2. Calculation of Type-A Dipole by Rotational Isomeric State (RIS) Model

In the actual calculation of <u>, it is difficult to calculate the average over
the whole molecule.> We may use two methods. One method is to approximate eq
II-5 by

<P-r>

<yg>=— (I1I-6)
<r?>

If the potential for the internal rotation is known, the average values of <P.r> and

<r?> are calculated by?

1

. — T
<P-r>= Zij mt <T, T T, >u,

(I1-7)
<r?> = X, T <T, ~T;,T;, >u
where m, and u; are the i-th bond dipole moment and bond vector, respectively, and
T, is the orthogonal matrix which transforms a vector expressed in the reference
frame i+1 to that in the reference frame i. The superscript T indicates the
transposed matrix. For the calculation of < T, -+ > we used rotational isomeric
state (RIS) model developed by Flory.?

The other method is to perform a numerical calculation of eq II-5 for a sub-

chain, i.e., for a portion of he chain for which <y> is given by
<pu>=<p-b/b*> (11-8)

with b the end-to-end vector of the sub-chain. We expect that <y> converges to a
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value given by eq II-5 when |5 | becomes the order of the Kuhn step length.6:7
The details of these methods and the results of the calculation for PI, PCL

and PVL are described in Chapter IV.

II-4. Static Behavior of Type-A Polymers

1I-4-1. Dielectric Constant of a System Involving Type-A Dipoles

First the relation between the macroscopic dielectric relaxation strength and
dipole moment m of a molecule is considered. We assume a dilute solution in which
N small molecules are dissolved in unit volume. The macroscopic polarization M

is given by3:?

fm exp (in-E ;/kgT ) dv
M= N (11-9)

[ exp (m-E g /kgT ) dv

where E g is the effective electric field and dv, the solid angle dw times the
differential dm of the dipole moment. Obviously the statistical average of M is
proportional to E . Since the electric energy m-E i is much smaller than the
thermal energy kg7, we expand the exponential function to the first order of m-E ¢

to a good approximation. Then the absolute value of polarization IM | reads

N [ (m-E 4/E )(m-E ) dv
M| = Lt a (I1-10)

kT [ dv

The integral of (m-Eeff)z/Eeff equals <m 2>Eeff <cos?0 > where 6 is the angle

between m and E ;. With <co0s26 >=1/3, the the absolute value |M | is given by.
M| = NFE <m 2>/3kyT (1I-11)

where E is the external field and F is the ratio of the internal/external electric field.
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When we use the c.g.s. esu unit system, the electric displacement D is defined by

47 N <m 2>
D=¢E+4nM=¢ E+ —— FE (11-12)
3k, T

where €_ is the dielectric constant of the media. This equation with the relation of

D =¢E yields for the relaxation strength A¢ (=€-¢€_)

A€ 4w N y\<m?>

= F (I11-13)
o 3k, T M

where C is the concentration of polar molecule in mass/volume and M is its
molecular weight. Equation II-13 is applicable to dilute polymer solutions. For

polymer chains having type-A dipole moment P ,, <m?> in eq II-13 can be replaced

by <PA2> and thus the relation between <r 2> and Ag can be written as!?

Ag 4m N, pu? <r?>
—= F (11-14)

c T M

where g has been defined in eq II-1. This equation means that if u is determined
either theoretically or experimentally and F is known, the absolute determination of
<r 2> is possible.

I11-4-2. Internal Electric Field

The internal electric field has long been studied theoretically. The simplest
expression of it is the so-called cavity field proposed by Lorentz!! who considered
the dilute solution of a polar molecule dissolved in a nonpolar solvent. Assuming
that a point dipole is put at the center of a vacuum cavity of the size of the polar

molecule, he expected F as

F=(,+2)/3 (1I-15)
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where g is the dielectric constant of the solvent. The dipole feels the external field
E plus an extra field generated by the charge at the surface of the cavity due to the

polarization of the solvent. In the Onsager theory,!!-12 surface charge induced by a
reaction electric field due to the dipole itself is also taken into account. In the case

of a non-polar solvent, F is given by

F=(e,+2)?%/9 (I1-16)

Stockmayer and Baurl9 used this equation in their theory of the normal mode
relaxation. For a pure polar liquid, such as neat chlorobenzene, the Onsager theory

predicts>-7

F=(n? +2)2Q2¢, + 1)/ 3(2¢, + n?) (I1-17)

where n is the refractive index of the liquid.

In case of solutions of a type-A polymer, however, it is quite doubtful that
any of these equations can be used for F in eq II-14 because the assumption of a
vacuum cavity of the size of a random coil is not realistic. Adachi et al.!3 examined
the £, dependence of Ag for dilute solutions of a type-Al polymer poly(2,6-
dichloro-1,4-phenylene oxide) (PDCPO) in various solvents such as chlorbenzene
(C1Bz) (g,=10.1), o-dichlorobenzene (DCIBz) (£,=5.6), and carbon disulfide (CS,)
(€,=2.6). Using <r?> estimated from [77] with an approximation of uniform
expansion, they found that (Ag/C)/<r?> is independent of £, in contrast to the
strong dependence of F on g, predicted by eqs II-15 - II-17. They concluded that F
is independent of g, for type-A dipoles and found that F is equal to unity by using
4

eq II-14. For the validity of F=1, they further made a theoretical consideration.!

Therefore we use F=1 hereafter.
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II-5. Dynamical Features of Normal Mode Relaxation
The complex dielectric constant £* of macroscopic system is generally given
by the Fourier-Laplace transform of the time ¢ derivative of the response function

@(t)ls

<M(0)-M(t)>
P(t)=——— (I1-18)
<M(0)2>

where M is the vector sum of both the permanent and induced dipole moments

existing in the system. Then €" is written as16-18
e* =g (w) - ie” (w)
=e_+ Ae [ (-d® /dt Yexp (-iwr) dt (11-19)

0

where £_ is the unrelaxed dielectric constant; i 2-_1; w, the angular frequency; and
Ag, the relaxation strength.

We consider a solution of a monodisperse type-A polymer in a non-polar
solvent. The dipoles present in this system are the permanent dipoles of the i-th
polymer molecule P, those of the solvent molecules m the induced dipole
moments of the polymer ¢;, and those of the solvent ¢ . Then M is the sum of

these dipole vectors:
M(t) = Z.P, +Z,q; +Z.m +X1.q (1I1-20)
From eqs II-18 and II-20, we obtain a quite complex expression of @&(r). However,

as far as the normal mode process of a type-A polymer is concerned, the cross-

terms such as <Pi(0)"lj(f)> and <Pi(0)-mj(t)> can be ignored, because these
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correlations decay much faster than <P,(0)-P;(r)>. We may also ignore the cross
correlation function <P,(0)-P,(#)> between i and k-th chains, when the dipole
moment of the polymer is not large. Then @ (¢) is reduced to the molecular

autocorrelation function as given by

<P(1)-P(0)>
() — — (I1-21)
<P(0)2>

When the polymer possesses the type-A and type-B dipole moments, P is the vector
sum of two dipoles P, and Pg. Similarly to the terms <Pi(0)-qj(t)>, we can safely
ignore the cross terms between the parallel and perpendicular components, i.e.,

<P ,(0)-Py(£)> and <Py(0)-P ,(1)> because these terms also decay faster than

<P ,(0)-P,(1)>. In addition, since these terms are zero at t=0 as discussed in the
previous section, its relaxation strength is considered to be small. Therefore P can
be replaced by P,. Since P, is proportional to the end-to-end vector r, we finally

obtain

<r (t)er (0)>
D ()= (I1-22)
<r (0)2>

A point to note here is that u appearing in the denominator and numerator cancel
each other and hence the slow dynamic behavior is independent of the absolute

value of u.
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III. Sample Preparation and Methods

III-1. Introduction
For experimental studies of the conformational and dynamical properties of
flexible polymers, we need well characterized narrow distribution samples. In this

chapter, methods of sample preparation and characterization are summarized.
In this work the dielectric method was mainly used. Measurements of light
scattering and intrinsic viscosity were also used to characterize the dilute solution

properties. The methods and principles of these measurements are also explained.

III-2. Sample Preparation

1I1-2-1. Polyester Samples

Four poly(e-caprolactone) (PCL) and three poly(d-varerolactone) (PVL)
samples with narrow molecular weight distribution (MWD) were prepared with a
catalyst of lanthanide compounds by Prof. Yasuda of Hiroshima Un.iversity. The
details of the polymerization are given in ref.1. The two MW PCL samples with
M, (the weight-average molecular weight) =1.58 x 105, 2.57 x 10° (see Table I) were
obtained by fractionation from a sample having slightly broad MWD with M /M
(the weight to number-average molecular weight ratio) = 1.2. The fractionation was
made by using benzene and n-heptane as the solvent and non-solvent, respectively,
according to Koleske and Lundberg.?

II1-2-2. Polyisoprene and Polybutadiene Samples

All cis-Polyisoprene (PI) and polybutadiene (PB) samples were prepared via
anionic living polymerization in n-heptane at 20 5 °C. As an initiator of
polymerization, sec -butyllithium (s-BuLi) was used normally. For determination of
molecular weight (MW) of PB samples by the end group analysis, tert-BuLi was
used as the initiator.

I11-2-3. Dipole Inverted Polyisoprene Samples

PI samples with symmetrically inverted dipoles were prepared via coupling of
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monodisperse PI anions with a prescribed amount of p-xylyrene dichloride (XDC)
and successive fractionation using benzene/methanol as a solvent/non-solvent.3
Five PI samples with asymmetrically inverted dipoles were synthesized by a multi-
step coupling method as summarized in Scheme 1.

As shown in Scheme 1, the method splits the coupling of two living PI
precursors of molecular weights M, and M, into several steps. In the first step, to
a vigorously stirred dilute heptane solution of the first PI precursor anions (with M,
> 24 x 103) added at -78°C was a large amount of XDC (= 30-40 times excess to the
anions) diluted with tetrahydrofuran (THF) was added at -78°C. Immediately after
the addition, single-chain termination was completed and the first precursors with
chlorinated ends (PI-Cl) were obtained as a major product. When necessary, the
living ends of the precursors were converted to diphenyl ethylene (DPE) anions
through a reaction with about 2 times excess of DPE just before the addition of
XDC (case II of Scheme 1).

In the second step, the first-step-product was precipitated into pure acetone (a
non-solvent for PI) to largely reduce the amount of unreacted XDC left with the
product. After removal of the supernatant containing the excess XDC, the
precipitated product was thoroughly dried and then re-dissolved in pure THF. The
whole precipitation/re-dissolution procedure was repeated in high vacuum for
several times, %5 and the PI-Cl/THF solution containing only a small amount of
residual XDC was recovered (cf., part b of Scheme 1).

In the third step, the PI-Cl chains were allowed to couple with 2-3 times
excess of the second precursor PI anions (with M, < M) at = 30°C for 2-3 days to
yield dipole-inverted PI chains (cf., part ¢ of Scheme 1). (Dimers of the second
precursors were also formed as a minor product due to residual XDC, but they were
removed by later fractionation.) For convenience for later characterization, the
living ends of the second precursors were converted to DPE anions when DPE was

not used in the first step (case I of Scheme 1), and vice versa (case II).
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case I ‘case II
0 DPE©®
a) (1st P (1st PI)
1) large excess of Cl-X-Cl (XDC)2
2) precipitation/re-dissolution in vac.
(removal of excess XDC)
—_—X-a —— S DPE-X-Cl
b) (PI-Cl, major product) (PI-Cl, major product)

+ X +——- DPE-X-DPE ¢

(dimer-1, minor product) (dimer-1, minor product)
+ residual XDC + residual XDC
ODPE «— Oc—
(small excess of 2nd PI) (small excess of 2nd PI)

————— X-DPE ¢— ——— DPE-X

(major product) (major product)
+ X« + —y DPE-X-DPE ¢—
c) (dimer-1, minor product) (dimer-1, minor product)

+ ~— DPE-X-DPE —— + — X —
(dimer-2, rhinor product) (dimer-2, minor product)

+ DPE «— + —
(unreacted 2nd PI) (unreacted 2nd PI)

fractionation
(removal of minor products)
oo X-DPE ¢— — S DPE-X «—
d) (desired PI-PI) (desired PI-PT)

a: X = -CHQ_—@-CHT

Scheme 1. Synthesis of PI chains with asymmetrically inverted dipoles via

multi-step coupling.
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Finally, after fractionation of the third-step-product from benzene/methanol
solutions, we obtained dipole-inverted PI chains composed of two PI blocks of the
molecular weights M, and M,: The direction of the parallel dipoles is the same in

each block but inverted at the junction between the two blocks.

III-3. Characterization

I11-3-1. Gel Permeation Chromatography

The weight-average molecular weights, M, of all samples except for the four

w?
high MW PI and four low MW PB samples were determined by gel permeation
chromatography (GPC: Tosoh Co., Model HLC-801A) equipped with refractive
index (RI), ultraviolet (UV) absorption (Tosoh, UV-8011) and low angle light
scattering (LS) (Tosoh, LS-8000) monitors. The eluent was tetrahydrofuran (THF).
The M /M _ ratio was calculated from the GPC diagram by using the calibration
curves of M, vs.elusion volume. The characteristics of the PCL and PVL samples
are listed in Table I, and those of PI and PB in Table II. The resulting MW values
for four high MW PIs from light scattering and for oligo-PBs from NMR are also

listed in Table II (see 11I-2-3 for NMR measurement).

Table I. Characteristics of PCL and PVL Samples

code 1073My My /M, [(M1%glcm®  code 103My My/M, (11%/g ' cm3

PCLO09 9.12 1.07 25.4 PVL14 13.9 1.08 22.2
PCL17 16.6 1.09 37.3 PVL24 23.8 1.07 29.8
PCL38 38.0 1.09 65.7° PVL38 38.0 1.07 44.2
PCL158 158 1.09 170
PCL257 257 1.10 223

a: determined in benzene at 25°C
b: calculated from the equation [1]=6.4x10"2 MWO'66

229-



Table II. Characteristics of PI and PB Samples

code 103M, M M, [171%glcm?
PI-86 86 1.06

PI-140 140 1.05  88.1
PI-222  222b 1.07

PI-542  542° 1.06

PI-651 651 1.19

PI-743  743% 1.07 249.6

1

PI-1230 1230P°

.07

or M,

code 1073Mm, MM, [M1%g lem?

PB-0.7 0.711°

PB-01
PB-03
PB-05
PB-06
PB-09
PB-13
PB-20
PB-33
PB-63
PB-89
PB-211
PB-521

1.25¢
2.70°
5.40°¢
5.95
9.24
13.0
19.9
33.1
62.9
89.0
211
521

.05
.07
.05
.06
.06
.04
.05
.03
.15

20.9

39.7
64.8

127
225

a: determined in heptane at 22°C

b: determined from LS measurement

¢: number average molecular weight determined from NMR

measurement

IT1-3-2.Characterization of Products by Multi-Coupling Reaction

The products of the dipole-inverted PI samples were characterized with the

GPC apparatus mentioned in the previous section. Monodisperse PI chains

3

used as elution standards for the products synthesized by the multi-coupling

reaction.

were

Through the multi-step coupling, a UV-active coupler-unit composed of p-

xylyrene and DPE groups was attached to each PI chain (cf., part d of Scheme 1).

This low-MW unit had no detectable contribution to the RI and LS signals for the
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high-MW PI chains made in this study. However, since the isoprene unit has very
weak UV absorption (at A = 254 nm), even one coupler-unit per chain drastically
increased the UV signal intensity. Using this feature, we examined the
coupler/isoprene composition at various stages of the multi-step coupling through
the UV signal.

As an example of the UV and RI signals of the products at various stages of
the reaction, Figure III-1 shows those for the case II (¢f., Scheme 1) with M| =
34.7 x 103 and M, =13.7x 103. The signal sensitivities are the same for all GPC
traces a-e, so that the changes in coupler/isoprene composition during the reaction
are seen in the figure as the differences of the UV/RI signal ratios for the traces.
For the main peaks of the traces a and b obtained before and after the reaction of the
first PI precursor with DPE and XDC, we find that the RI signal is the same but the
UV signal is much larger for the latter. Thus, the coupler-units were successfully
attached to the precursor ends to obtain the PI-Cl chains as the main product.
Although a small amount of the dimers was seen for the trace b at a location
corresponding to 2M (the solid arrow), they were removed by later fractionation.

The GPC trace b of the first-step product was not affected by the
precipitation/re-dissolution procedure, and changed to the trace d after the reaction
with the second precursor PI anions (trace ¢). The UV/RI signal ratio for the main
peak of the trace d is certainly smaller than that for the main peak of the trace b. In
addition, we found that the former peak appeared at a location corresponding to M =
M+M, (shown by the diamond-shaped arrow). These results indicate a successful
coupling of the two precursors. Finally, a small amount of undesired components,
unreacted second precursors, their dimers (dashed arrow for the trace d), and the
dimers of the first precursors (solid arrow), were removed by fractionation to
obtain the final product.

The weight-average molecular weights M, and polydispersity indices M /M

for the PI precursors and the dipole-inverted PI chains (final product), were
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Figure III-1. GPC traces for products obtained at various stages of the

synthesis of a dipole-inverted PI sample with M, = 34.7x103 and M, =

13.7x103. The solid and dashed arrows for the part b and d indicate the dimers

of the first and second precursors, respectively. These minor components were

formed through a bimolecular termination of living precursor anions by p-

xylyrene dichlorides. The diamond shaped arrow for the trace d indicates the

dipole-inverted PI chain having M = M, + M,.
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evaluated from their RI signals with an elution volume calibration. The M values

were also determined from the LS s‘ignals, and good agreements were observed.

The results of the characterization are summarized in Table III. As seen there, the

molecular weights for all the PI samples (except I-1 415-415) are nearly the same.
In addition to the RI and LS signals, the UV signals were analyzed to

evaluate a quantity

AC +A +4A,
uv = (ITI-1)
Ag '

Here, A and A, are the molar UV absorption for the first and second PI blocks
involved in the final product (cf., part d of Scheme 1), and A_ and A; are the molar
absorption for the coupler unit and the final product, respectively. We should have
ryy = 1, if the final product contains only the desired PI chains with asymmetrically
inverted dipoles. Thus, the quantity r;y, was used as a measure for a purity of that
product.

A, and A, were evaluated from the UV data and molecular weights of the PI
precursors recovered before the reaction with DPE and XDC (cf., Scheme 1.
Similarly, A; was evaluated from the UV data and MW for the final product. For
evaluation of A for the cases I of Scheme 1, we measured the molar UV absorption
A, for p-xylene and A, ppg for the end-modified second precursor recovered after
the reaction with DPE. The difference AA, = A, ppg - A, represents the molar
absorption of the DPE unit involved in that precursor, and A was evaluated as AA,
+ A,. For the cases II, we replaced the chlorine atom at the end of the first
precursor by isoprene-pentamer through an end-capping reaction with a large
amount of living pentamer anions. 100% replacement was easily achieved within 1k
for this reaction involving oligo-anions. From the molar UV absorption Al-c-p for

the resulting end-capped precursor, A, was evaluated as A l-cp - Aj.
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The ryy values calculated from the A values are summarized in Table III
together with the other measure for the product-purity, ry = (M + M,)/M with M,
M,, and M being the molecular weights of the two PI precursors and the final
product, respectively. As seen there, both ryy and ry values are identical to unity
within experimental uncertainties, indicating that the desired PI chains with

asymmetrically inverted dipoles were successfully obtained.

Table III. Characteristics of Dipole-Inverted PI Samples.

Code 10‘3MW M, /M, rUVb ry¢  first precursor  second precursor
103M2 M /M, 103M,2 MM,

I-149-09 48.8 1.05  -ce-ee -oooe- 48.8 1.05  cceoee meeee-
1-150-6 55.4 1.06 1.03 1.01 49.9 1.05 6.12f 1.08
I-135-9 44.4 1.05 1.04 1.00 350 1.04 9.48 1.04
I-135-14 47.6 1.07 0.96 1.02  34.7 1.05 13.7  1.04
I-133-16 48.9 1.07 0.98 0.99  32.6 1.07 15.7  1.04
I-128-18 47.4 1.06 0.96 0.96 27.5 1.04 18.0  1.04
1-124-24 47.7 1.06  --comn -zmen- 23.9  1.05 = cccees eeee-
I-1415-415¢ 8288 1.08 ----o-  --ooo- 4158 1,07 ceeemm meee-

a: weight-average molecular weight

b:ryy=(A,+ A + Ay)/A¢

ciry =My +My/M

d: regular PI without dipole-inversion

e: this sample is used in section V-3.

f: this sample is used in section V-5.

g: determined from the GPC calibration using the PI samples characterized by
LS measurement (listed in Table II).
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I11-3-3. Nuclear Magnetic Resonance (NMR)

The number average molecular weight M of oligo-PB samples were
determined from the molar ratio of protons in the backbone to the tert-butyl group
by !H-NMR (JEOL GSX-400 at 400 MHz). NMR measurements were carried out at
30°C for 20 wt % CDCl, solutions, and a small amount of CHCl; was used as an

internal standard. Figure III-2 shows the representative 'H-NMR spectrum of PB-01.
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b’ c' ﬁH d
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Figure III-2. NMR spectrum of PB-01.
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The assignment of NMR peaks of each proton in the structure of cis-, trans-, vinyl-
and in z-butyl group was made according to the references 6 and 7 and shown in this
figure. From the NMR peak intensity / of each protons, number average molecular
weights were determined from the following equation:

U+ )12+ 4+ )/3

M, = x 54 +57+1 (I11-2)
1./9

a

where the subscripts correspond to each proton in Figure III-2. The results are

listed in Table I1.

I1I-4. Methods

III1-4-1. Dielectric Spectroscopy

When alternating voltage V' (= Vo e!®") is applied to a capacitor of vacuum
capacitance C filled with a dielectric of e (=¢’- ie"). The complex admittance is

iwCOE* and the current I* (= 1, gi(@r+n/2-8) y raversing the capacitor is given by?®

*

I" =ioC,e*V* (I1I-3)

When the capacitor is equivalent to a parallel combination of a pure capacitor with

capacitance C and a pure resistor with conductance G, €’ and £” are given by

gL e (111-4)

Co oC

These two quantities, C and G, were measured with capacitance bridges; in the
range from 100 Hz to 20 kHz and 20kHz to 1MHz with two capacitance bridges®
(General Radio 1615A and Ando TR-IBK Type respectively) and 20kHz to 1 MHz
with an LCR meter (Yokogawa Hewlett-Packard 4284A) and those from 1MHz to
100MHz with a twin-T type bridge (Fujisoku DLB 1101D).

Two type of capacitance cells (i) and (ii) were used. Sketches of the cell and
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Figure III-3. Sketches of the capacitance cell: (i) standard cell, (ii) large cell.
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the cryostats are shown in Figure III-3. For measurements on dilute solutions of
PI, the cell (ii) with C = 130 pF was used. The other samples were measured with
the standard type cell (i) C, = 25 pF. The cell (ii) was designed to detect a weak
signal from a trace amount of PI in dilute solution in such a way that liquid samples
could be introduced into the cell from the inlet D without dismantling the cell in
order not to change C.

Since values of £” for dilute solution of PI were of the order of 10-4, careful
data correction was needed. The measurements were carried out twice on the pure
solvent and then on a sample solution. The €” value was corrected by subtracting
the £” value for the pure solvent from that for the solution. Figure III-4 shows the
representative data of £¢” measured with the General Radio and Ando bridges before

and after this correction.

o} T T T T T
PI-542/Hep
4r 3.08x10° gem’®

log (f/ Hz)

Figure III-4. Representative data of €” for PI-542/heptane solution. The
smaller open circles represent apparent (uncorrected) value measured with GR
bridge and the filled circles are the data after collection of subtracting the &” of
pure solvent. The larger unfilled circles in the high f range are those measured
with the Ando bridge and corrected by the same method.
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The relaxation strength Ae was determined from the area under the £€” curve
by

2 oo
Ae= — [ €" dinf (I11-5)
T — o0

When the measured frequency range was limited, we assumed that A€ is

proportional to the loss maximum value £”_, of the loss multiplied by the half

ax
width &, i.e., Age= K'e”_,, 6. The constant K’ was estimated to be 1.8 from the £”
curves measured over wide frequency range. The error in the determination of A€

is estimated to be within 5%.

I11-4-2. Viscometry

Intrinsic viscosities [7]] were determined by using a Ubbelohde type capillary
viscometer. The results are listed in Tables I and II.

The relative viscosity of PB solutions was also measured with the Ubbelohde
type viscometer. The results will be used for the discussion about the relation
between dielectric relaxation time and medium viscosity for PI/PB/heptane ternary
systems in section V-4,

I11-4-3. Light Scattering Measurements

In order to determine the mean square radius of gyration <S2> for PI in
cyclohexane and in heptane, light scattering measurements were made with a
scattering photometer (Fica 50) using cylindrical cells in the angular range from 30
to 150°. The vertically polarized light of 436nm was used as the incident beam.
With pure benzene as the reference liquid, reduced scattering intensities R g for

polymer solutions was calculated.!?

At infinite dilution, Ry is expressed by

KC 1 1(an ¥ o .6 46
—_ == — | <§ ">, sin"=—+0(sin =)
Ro ko Mwl 3UA 2 2 (111-6)
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where A is the wave length of incident light in the scattering medium and X is the

optical constant defined by
K= 4n2ny% (dn/9C)? | N \Ay* (111-7)

with A, and dn/dC being the wavelength of incident light in vacuum and the specific
refractive index increment in units of cm3g-1, respectively. The value of dn/dC for
Pl/heptane solutions at 25°C was determined to be 0.165 cm3g-! by using a
modified Schulz-Cantow type differential refractometer. For dn/dC of cyclohexane
solutions, the value reported by Takano ez al. (0.115 cm3g'!) was used.!! Figure
II11-5 shows the plots of (KC/R 9)”2 vs. sin2(6/2) at infinite dilution for PI samples
in cyclohexane and heptane at 25°C. For any samples, the intercepts for the two
solutions are quite close to each other, showing a good agreement of M, value in
the two solvents (see eq 1I-6). The value of <§2> of PI determined from the initial
slopes of the plots are compared with the dielectric relaxation strength data in

section I'V-2.

-40-



@) Hep 25°C -1

24

W

1
0 05 10
sin’(8/2)

Figure III-5. Plots of (KC/R9)1/2 vs.sin2(6/2) for solutions of PI samples in
heptane and cyclohexane at the infinite dilution. Samples; P1-222, PI-542, PI-
743, and PI-1230 from top to bottom.
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IV. Dipole Moment and End-to-End Distance

1V-1. Introduction

In this chapter, the end-to-end distances of PI,! PCL, and PVL chain? in
dilute and semidilute solutions are studied on the basis of eq II-14. As pointed out
in the introductory chapter, the dielectric method is unique in the sense that it
provides information on <r2>. There have been no experimental studies on the
comparison between <r?> and <S2> although several theoretical calculations were
made.3'4 For this purpose it is needed to examine the reliability and the limit of
applicability of eq.II-14 to types Al, A2, and A3 chains. Obviously <r?> is
uniquely determined for type-Al chains if u is determined theoretically or
experimentally. The u value so determined can be used irrespective of the condition
such as solvent quality. On the other hand, for type-A2 or A3 polymers, <u> of eq
II-2 may depend on the solvent nature. Therefore strictly speaking, we have to
determine <> for each solvent or medium to evaluate <r?>. This will be a rather
laborious work. However, optimistically speaking, the solvent effect on <u> may
be small and <u> calculated in vacuum may be used in a good approximation. The
two-parameter theory> of polymer solutions assumes that the dimension of a random
coil is described by the excluded volume parameter and the step length b. The value
of b is usually insensitive to solvent quality. If so, this must also be the case for
g. In fact, the data of the unperturbed dimensions of polymers listed in Polymer
Handbook? indicate that the values of the characteristic ratio C_, for a given polymer
are independent of solvent nature within a scatter of 10%. In an effort to settle
these problems, we compare our experimental P, with the theoretical dipole
moments calculated by ab initio molecular orbital® and rotational isomeric methods’
in section IV-2 of this chapter.

The end-to-end distance of a polymer chain decreases with increasing C by

the shielding effect of excluded volume.8? For type-A polymers this effect is
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expected to be reflected to the change in Ag/C. We investigate the C dependence of
Ag/C for PI and PCL solutions and compared with the scaling theory proposed by
Daoud and Jannink.8:?

The study of PI semidilute solution is extended to <r?> of probe PI chains in
semidilute PB solutions in section IV-3. We investigate the excluded volume effect
in the ternary system. The purpose of this investigation is to clarify how the
excluded volume of the probe PI chain is shielded by its matrix PB chains in this

system, especially the effect of PB molecular weight My and PB concentration Cp.

IV-2. End-to-End Distance of Several Type-A2 Chains in Dilute

Solution

IV-2-1. Calculation of ¢ by the MO and RIS Models

In this section we attempt to calculate g for PI and PCL. The ab-initio
method® was used for calculation of the monomer dipole moment and the rotational
isomeric state (RIS) model for determination of <u> with eqs II-6 and II-7.

First we calculate the absolute value and the angle to the backbone of the
monomer dipole moment for PI and poly(lactone)s by ab-initio molecular orbital
method. In this calculation we adopt the bond lengths and the bond angles given in
reference 7 and the rotational angles are all fixed to trans as shown in Figure IV-1.
The calculated dipole vectors are indicated by arrows in this figure. The dipole
moment of -COO- unit of 1.19 D is ca. 34% smaller than the observed value of 1.81
D for n-propylpropionate.1® The discrepancy suggests that the ab-initio method is
not so reliable for a molecule containing hetero-atoms such as oxygen and nitrogen.
Thus we will use 1.81 D for the dipole moment of the ester group and only the
direction of the dipole vector obtained by the ab initio calculation was employed.
For PI, the calculated value may be reliable, since PI has no such hetero atom.

Next we tried to calculate <p> with eqs II-6 and II-7 by the RIS model. The

potentials for internal rotation were taken from reference 7 were adopted.
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Figure IV-1. Result of MO calculation for PI and PCL.
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Figure I'V-2 shows the results of calculation on PI and PCL. The converged values
of u were taken as <u> at N — oo and listed in Table IV.

On the other hand we experimentally evaluated the value of <y> by the
following procedures. From eq II-14, <u> is given by (3kgTMAg/4nN ,C<r?>)}/2
with F = 1. The <r?> value was evaluated from the data of <§2>.11.12 for PI

assuming <r?> = 6<S2>_, and for PCL and PVL <S2> was calculated from [7]

9’
assuming the Flory-Fox equation [n]=® (<r2>3/2/M ) with @ =2.5x1023.13 From
the dielectric data of A¢ and the value of <r2> thus evaluated, we determined <u>
for each polymer. The results are listed in Table IV. We see that the calculated and
observed <pu> values agree within 25%. The discrepancy is attributed to the
uncertainty in the dipole moments and the RIS potentials. Especially a large error
may be involved in the RIS potentials of PCL since Flory and Williams7 estimated

them assuming the similarity of the ester and amide groups. Therefore a detailed

calculation remains as future work.

Table IV. Comparison of <u> values between the observed and calculate ones.

calculated u / esu observed 1 / esu
cis-Polyisoprene 4.99x10°12 5.39%x10-12
poly(e-caprolactone) 8.98x10°12 11.3x10°12
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Figure IV-2. Result of the RIS calculation. Dependence of <u> on the degree
of polymerization N for PI and PCL.
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1V-2-2. Relation between Local Dipole Vector and Conformation

Figure IV-3 shows the local conformations of PI and PCL. For PI, it is noted
that carbon atoms 1, 2, 3 and 4 locate on a plane because the internal rotation of the
-C=C- double bond is forbidden. Thus PI is composed of the virtual bond indicated
by the dashed line and bond C,-C,. This figure also shows the potential energy E
for the internal rotation angle ¢ around the C;-C, bond calculated by a computer
program "Molecular Mechanics 2" MM2.14 It is seen that in the range of
100<9<250°, E is very high. This indicates that the direction of C,-C, bond is
confined in a relatively narrow region of £80°. Thus the fluctuation of the end-to-
end vector u of the monomer unit against the monomer dipole vector p is relatively
small. This suggests that PI is approximately a type-Al chain. Contrary, in the
case of PCL, the u fluctuates randomly against p. Thus it is expected that yu of
PCL depends more strongly on the local conformation than that of PI.

I1V-2-3. Summary of Applicability of the Dielectric Method to Study of <r22_

In this section we summarize the applicability of eq II-14 to studies of end-
to-end vector. We may utilize eq II-14 in two ways, namely the determination of the
absolute value of <r2> and the expansion factors &. The & for <S2> and <r2> are

defined by

a2 =<5%>/<5%> (IV-1a)
S 0

0,2 = <r’>/<rt>, (IV-1b)

where the subscript 0 indicates the unperturbed state. In studying the MW
dependence of ¢, in a solvent, no the exact value of y is required, so that eq II-14
is applicable in this case. Similarly, the exact value of u is unnecessary in the C
dependence of & in semidilute solutions where the local chain conformation may be

same in dilute solution. However for either comparison of the absolute <r?

> among
different solvent systems or determination of the absolute value of <r*>, we have to

determine <u> for each system.
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From eq.II-14 we can also define the "dielectric expansion factor” &, by
a2 = (Ae/O)(AelC)y = a2 (uP/ug?) (IV-1c)

where pg denotes u in a theta state.

We have already shown that in type-Al polymers p/iqy is always unity.
However in type-A2 or A3 polymers, u/ug may change with the potential of the RIS
which changes by polymer-solvent interactions. In Table V the applicability for the
determination of <r?> for type-Al, A2, and A3 polymers is summarized. In this
table O indicates that g is uniquely determined or the absolute value of u is not
necessary and X denotes that 4 depends on the solvent. In the case of X, we have
to determine y either by experiments or by the RIS potential determined by taking

into account the polymer-solvent interactions.

Table V. Applicability of the determination of <r?>

Relative values

C dependence Comparison of <r%>
M, dependence ] P Do P L absolute
in Semidilute among solutions in
at constant C ) . value
solution different solvent

Al O O O O

A2 and A3 O O X X

*: If u is determined by the local chain conformation and the conformation
does not change against C, the applicability becomes good. In semidilute
regime the local chain conformation is expected to be the same as that in dilute
solution but in concentrated regime it may change so that the applicability will

be limited in semidilute regime.

-50-



As mentioned above, PI can be approximately regarded as a type Al chain. Thus
p/ug = 1 for PI. In section I'V-3, we will compare cxez(saf) and as2 for PI

solutions. In the later sections the M, and C dependence of aez is discussed.

I1V-3. Dielectric Relaxation Strength and the Type-A Dipole Moments

IV-3-1. cis-Polyisoprene (PI) in Cyclohexane and Heptane Solutions

Figures 1V-4(a) and (b) show €"/C for dilute cyclohexane (good solvent) and
heptane (marginal solvent) solutions of PI. We see that the peak area increases with
increasing molecular weight. The relaxation strengths Ag/C calculated from the area
under the €” curves (cf. eq III-5) are plotted against M in Figure IV-5. In this
figure we have also plotted the data of dioxane (0 solvent) solutions. We can see
clearly the excluded volume effects in this figure.

For the comparison between <S2> and <r?>, we made light scattering (LS)
measurements on the cyclohexane and heptane solutions. The z averaged mean
square radius of gyration <S2>Z divided by M, is plotted against M, in Figure IV-6.
Here the <S2>Z for PI/dioxane solutions reported by Hadjichristidis ef al.1! and
Tsunashima er al.1? are also plotted. We note that the slopes for each solvent in
figures IV-5 and IV-6 agree well.

Now we consider the expansion factors 0(g? and . % assuming o,=¢_. Since
ar2 thus calculated corresponds to the number average, we corrected Ozr2 to the z-
average value by assuming Zimm-Schulz distribution.!® However the correction
factor was only 3%. Figure IV-7 compares Ocrz and a52 It can be seen that O o<
Og and O > O in the M, range studied. The relations between ar2 and OCSZ in the

two solvents expressed by

OCSZ =0.95 arz for heptane

og? =0.82 o> for cyclohexane (IV-2)
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Figure IV-4. Dielectric loss curves reduced by PI concentration in dilute

solution, (a) in cyclohexane and (b) in heptane.
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Figure IV-5. Double logarithmic plots of Ae/M, vs. M, for solutions of PI
in cyclohexane (good solvent), heptane (marginal solvent), and dioxane

(6 solvent).
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Figure IV-6. Double logarithmic plot of <SZ>Z/MW vs. M for the same
solutions as shown in Fig. IV-5. For the dioxane solution the data reported
by Hadjichristidis et al. and Tunashima et al. are plotted by filled and half

filled circles.
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Figure IV-7. Comparison of the expansion factors for <§?%> and A of Pl in

cyclohexane and heptane by taking the values in dioxane solution as standard.
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Domb ez al.# obtained the relation between ¢tg? and & 2 by a computer simulation of
self-avoiding random flight chains, with the result that og? = 0.93Otr2 for infinitely
long chains. Our results are consistent with their simulation. However the
proportionality constant 0.82 for cyclohexane solution (good limit solvent) is
smaller than their result by 11%.

Since p is constant in a given solvent, the M, dependence of & can be
determined explicitly. It is a reasonable result that the slopes of the log Ag/C vs.
log M, for cyclohexane and heptane solutions agreed well with those of
log <§%> /M, vs.log M,

1V-3-2. Poly(e-caprolactone) and Poly(&-varerolactone) in Benzene Solutions

In this section, we examine the dielectric relaxation strength of dilute benzene
solutions of PCL and poly(é-varerolactone) (PVL), both of which are similar in
structure as shown in Fig.II-3.

The [1] data listed in Table I can be cast into the Mark-Houwick-Sakurada
equations:13

[n] = 6.4x10°2 M 066 for PCL / benzene
[n] =3.0x10"2 M _0-69 for PVL / benzene (IV-3)

From the relation of [7]]ocMW3 v-1 " the excluded volume exponent v is determined to
be 0.55 for PCL and 0.56 for PVL. We see that benzene is a marginal solvent for
both polymers.

Figure IV-8 shows the M, dependence of A¢/C for PCL and PVL solutions.
Using the value of v evaluated from [7n], we predict the exponent for Ag/C (=<
<r?>/M, < M_%V1) to be 0.10 for PCL and 0.12 for PVL. The actual slopes of the
plots for PCL and PVL in Figure IV-8 are 0.11 for both and agree approximately
with this prediction. This indicates that the weak M dependence of Ag/C reflects

the change in <r2>/Mw with excluded-volume.
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IV-4. End-to-End Distance in Semidilute Solutions

IV-4-1. C dependence of Ag in solutions of cis-Polyisoprene

Figure IV-9 shows the C dependence of Ae/C for PI-743 and PI-140 /heptane
solutions. Itis seen that Ag/C begins to decrease with C when C exceeds C* (=
1/[n]). This may be considered to be the onset of screening of the excluded volume
effect.

Comparison with Scaling Theories

According to Daoud and Jannink,® the M and C dependence of <r2> in the

semidilute regime is given by

<r?> o MC2V-D/A-3V) (IV-4)

where v is the excluded volume exponent equal to 3/5 in a good solvent and 1/2 in a
® solvent. Eq IV-4 predicts that <r>>/M is independent of M and proportional to
C@2v-DI(1-3v)  Ag is seen in Figure IV-9, the data of <r?>/M for PI-743 and P1-140
in the range of C > 5C* coincide and fall on a straight line with a slope of -0.152,
which corresponds to v=0.56 in eq 1V-4. This value of v agrees with that (v=0.56)
estimated from the M, dependence of <§%> or Ag/C in dilute solution.

Scaling theory predicts that the ratio <r2>/<r2>0 becomes a universal function

of C/C*:
<r?>/<rt>y =1 C < C* (IV-5)
<r?>j<rt>, = (C/C*)2v-DIA3v) ¢ > C* (IV-6)

Here <r2>0 denotes the mean-square end-to-end distance in the dilute regime and C*
o« M1-3V. Figure IV-10 shows double-logarithmic plots of <r2>/<r2>0 vs.C/C* for
P1-743 and PI-140 solutions. We see that all data are successfully superposed and

well represented by eqs IV-5 and 6 except for the crossover region of C = C*.
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Figure IV-9. Double logarithmic plots of Ag/C vs. C at 295K for
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1V-4-2. C Dependence of A€ in Solutions of Poly(e-caprolactone)

In Figure IV-11, the C dependence of Ag/C is shown for the PCL-158 /
benzene system. With increasing C above 7x103gem™3, log A¢/C (=< log <r2>/Mw)
decreases. in proportion to C(2v-1)/(1-3V) " The indicated straight line approximately
fitting the data points for C > 7x103gcm™3 has a slope of -0.146 which yields
v=0.547 when eq IV-4 is used. This v value agrees well with that (v=0.55)
determined from [7] vs.M, relation. This behavior is quite similar to semidilute
solutions of PI. From such results, we can conclude that the C dependence of [ is

not so important in semidilute regime.
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Figure IV-11. Double logarithmic plot of A¢/C vs. C for PCL/benzene

solutions at 25°C.
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IV-5. End-to-End Distance of a Probe Chain in Polymer /Polymer

/Solvent Ternary Systems

This section deals with <r2> (o< Ag) of the PI probe chain in PI/PB/heptane
ternary solutions determined as a function of the molecular weights (M;) of the PI
chain, My of PB, and its concentration Cy. Especially two aspects are examined:
How the ratio M;/My and the interaction parameter y between PI and PB affect the
<r2> of PI. The results for the dependence on M /My and x are compared with
those for PI/heptane binary solutions which is regarded as a system of M;=My and
x=0.

1V-5-1. Background of this Problem

In ternary solutions consisting of a trace amount of probe chains (N chain)
with D}P = N, matrix chains (P chain) with DP= P and a good solvent, the
dimensional features of the N chains are classified into two regimes. If N >> P, the
P chains behave as a solvent and the screening effect will hardly act on the N chain.
On the other hand, in the case of N <P, the screening effect is similar to semidilute
binary solutions is expected.

Flory 16 first calculated the excluded-volume effect of a long N chain in a
matrix of homologous short P chains (a binary blend). He concluded that the P
chains behave as a good solvent and the N chain is expanded when their DPs satisfy
a condition of N'/2> P. Joanny et al 17,18 applied a scaling treatment and extended
the Flory theory to a ternary system composed of a single N chain, matrix P chains
of the chemically same kind, and an athermal solvent. They reported that the Flory
condition for the binary blend is replaced by (N/gp)”2 >P/gp, where gp is the blob
size and the suffix P denotes the P chain. From the relation gp < Cp!/1-3V, they
calculated that in 1 < Cp/Cp* < (N/P)3¥-1, the excluded-volume effect between the
blobs of the N chain is not fully screened and hence the N chain exhibits an
"anomalous"” behavior due to the inter-blob excluded volume effect. For example,

even in the semidilute regime <r%> is proportional to N2V and differs with P. For
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N/P < 1, on the other hand, <r?> of the N chain is equal to that in a semidilute
binary solution in which N = P.

Recently Nose!? extended the theory of Joanny et al. to a more general case.
He calculated the dimension of a single test chain (N chain) in a matrix consisting
of chemically different P chains in an athermal solvent. The interaction parameter
between N and P chains is y. He discussed the dimensional behavior of a single N
chain for the cases of (i) N >> P and (ii) N € P. To survey the whole aspect of the
theory, we first consider the simplest case of ¥ = 0 which is equivalent to the theory
of Joanny et al.}7-18,

In the case (i) of N >> P, the Nose theory predicts that there are three
regimes in which Cp dependence of <r?> are different. In regime I, the P chains do
not overlap each other and hence Cp/Cp* < 1. In this regime the dimension of the N

chain is nearly equal to that in the pure solvent:
<r’> = g?N?V Regime i-I (IV-7)

where a is the length of a monomer unit. In regime II, the short P chains are

partially overlapped, 1 <Cp/Cp* < (N/P)3V-1:

<rt> = a?N2Y(Cp/Cp* )2 (2V-D/(1-3V) Regime i-1I (IV-8)
In this regime, the excluded-volume effect between blobs in the N chain is still
prevailing and the value of the exponent of Cp/Cp* is two times larger than the
polymer/solvent binary system (eq.IV-4). The reduced end-to-end distance
<r2>/<r2>0 can be expressed by a universal function of Cp/Cp*. In regime III,

Cp/Cp* > (N/P)3V1:

<r?> = a?N €,V 103w Regime i-III (IV-9)
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In this regime the excluded-volume effect between blobs is completely screened, so
that the N dependence of <r?> is of the Gaussian type and the exponent to Cp is
equal to that of eq.IV-4. This equation can be rewritten as in Table VI. Thus <r?>
in the regime III can not be reduced by Cp*.

In the case (ii) of N < P, two regimes appear: The regime of Cp < C* is
referred to as regime-I where <r2>1/2 of the N chain is smaller than the screening
length & of the matrix solution. Thus the N chain expands as in the pure solvent

and its <r2> is given by

<r’> = g’!N2v Regime ii-I (IV-10)

When Cp < Cy* referred to as regime-II, <r?>1/2 > £, Thus the excluded volume

effect is screened and <r?> is given by

<r?> = @’N Cp(1-2V/Gv-1) Regime ii-II (IV-11)

In these regimes (ii-I,IT), <r?> is completely independent of P and cannot be
reduced by Cp*. These theoretical classifications are summarized in Table VI.
When x>0, we have to take into account the 8 concentration C9 where the
two-body interaction between the N chains changes from repulsive to attractive.
When Cp >> Ce’ the intra-chain excluded-volume effect in the N chain becomes

attractive and hence the chain collapses;
<rt> = a?N?2/3 C 23 203 (IV-12)
At Cp below Cy, the regimes discussed for the case of x=0 still exist, and especially

in the regimes i-I and II, the universality with respect to Cp/Cp* still holds well.

However the dependence on Cp becomes slightly stronger.
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For excluded volume problems in such ternary systems, however, few
experiments 20-24 have been reported so far. A purpose of the study in this section

is to provide a reliable experimental basis on which these theories can be tested.

Table VI. Theoretical classification of the dimension of guest chain.

(i) N>>P

Concentration <rt> [ <r?> regime
C/IC* < 1 1 i-1

1 < CP/CP* < (N/P)3V'1 (Cp/cp*)Z(l-Zv)/(Sv-l) i-1I

3v-1 (1-2v)/(3v-1) i-

CP/CP* > (N/P)’Y (Cp/CN*) Iy i-111

(ii) N <P

Concentration <rt>/ <r2>0 regime
C,/IC* <1 1 ii-I
Cp/CN* > 1 (CP/CN*)(I-ZV)/O v-1) ii-11

1V-5-2. End-to-End Distance of Tracer PI Chain in PB / Heptane Solutions

As mentioned in the above section we are interested in the following two
aspects: (1) the effect of the molecular weight of surrounding PB and (2) the
interaction between PI and PB on <r?> of the guest PI chain.

Figure IV-12 shows Ag/Cy (o< <r2>/M) for PI-140 plotted against PB
concentration Cy in matrices of PB-13, PB-63 ,PB-211, and PB-521. Figure IV-13
shows similar plots for PI-743 in solutions of PB-33, PB-211, and PB-521. C;
was fixed to be 2x10-3 gcm™3 for PI-743/PB/heptane system and 4x10°3 gcm3 for
P1-140/PB/heptane. These concentrations are less than C* of PI. Thus the PI
chains are not overlapped each other though the PB chains are in the semidilute
regime. In Figs IV-12 and IV-13, the data for PI/heptane binary solutions are also

plotted against the PI concentration Cy.
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Figure IV-12. Double-logarithmic plot of Ae/C of P1-140 vs.PB concentration Cy.
The data of PI/heptane binary solutions (reproductions from Figure IV-10) are also
plotted against log C;. The arrows indicate the C* for each matrix solution. The
large error bars in high MW PB solutions are due to the lack of data of the half
width 8 for £” curves because the peak located high frequency. Errors in the PI-
140/heptane (o) and PI-140/PB-13/heptane (V) systems are similar to those of the
PI-140/PB-63/heptane (a) system. The solid lines are guides for the eyes.
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We see that curves of <r?> lower with increasing Mg, but when My/M, is
larger than unity, <r?2> of PI becomes independent of My (see data of PI-140/PB-
521 in Fig.IV-12). Thus the matrix molecular weight affects strongly the guest
chain dimension as predicted by the theories of Joanny et al. and Nose. For the
case of M{/My > 1, the C where <r?> of PI begins to decrease is close to Cg*.

Thus we tried to reduce the data of Figures I'V-12 and 13 by <r2>0 and Cg* as
shown in Figure IV-14. We can see that all the curves approximately converge to
one universal curve except for PI-140/PB-521 system. This indicates that when a
PB matrix solution is regarded as a "solvent", the quality is determined by Cy/Cg*
for the case of M{/My > 1.

In the opposite case of M;/Mp<1, the screening length £y in PB solutions can
be larger than <r2>1/2 of PI since <r?>1/2 of PI is smaller than that of PB, . In
such a case the screening effect does not act upon the PI chain. Thus the PI chain
expands as in a pure good solvent. But when £ becomes nearly equal to <r?>1/2 of
PI, the PI chain begins to shrink by the screening effect.

Figure IV-15 shows the schematic representation of the guest PI chain
beginning to shrink for the cases of (a) M{/My >1 and (b) M;/My < 1. In the cases-
a and -b, the shrinkage starts respectively at Cyg =Cg* and Cy = C;* where <rt>1/2
of the PI chain becomes nearly equal to 5. In case-b the dimension of the PI chain
does not depend on My and depends only on the mesh size (screening length) which
is proportional to Cg!/1-3¥, so that the curves of <r?>/M, vs.Cy are considered to
become universal as was seen in PI/heptane semidilute solutions shown in Figure
IV-9. In Figure IV-16 we plotted A¢/C against Cy for PI-140/PB-211, PI-140/PB-
521, and PI-743/PB-521 solutions and also the data of PI/heptane binary solutions
against C; for comparison. We can see that these data for ternary solutions fall on a
single curve. This result indicates that in the case of M{/My < 1, <r?> is

independent of My and determined only by Cp.

-68-



00 )

!
o
I

log (¢rokr2,)

O PI-140 N
v PI-140 [PB-13 © ap
A PI-140 [ PB-63 A
O PI-140 | PB-211

O PI-140 [ PB-521

© Pi-743

© PI-743/PB-33
@ PI-743 [PB-211
O PI-743 | PB-521

S
N
[
>
e
|

1
-05 00 10 15

05
log (CgiCE)

Figure IV-14. Reduced plot of <r2>/<r?>, vs. Cy/Cy" for PI/PB/heptane

solutions. The solid lines indicate guides for eyes.

-69-



Figure IV-15. Schematic representation of a single guest PI chain in semidilute
PB solution. The PI chain begins to shrink at (a) Cy = CB* when M;>My and at (b)
Cg = CI* when M <My. In (b), &g is equal to the end-to-end distance of the PI

chain.
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Kuhn et al.2921 and Lin and Rosen2?? measured <S2> of high MW polystyrene
(PS) chains immersed in isorefractive poly(méthylmethacrylate)(PMMA)/solvent
system by light scattering. They found that the second virial coefficient A, of PS
decreased with Cpyp4 and the 6 concentration Cy at which A, becomes 0 was
proportional to 1/[n] (<<C*). And the Cpmma dependence of radius of gyration
<S2> was successfully expressed by the universal form, <§2>/<§%>, = f(C/Cy) in
the case of Mpg>Mpya. Our result is consistent with theirs provided that Cy* o<

C,. The case of Mpg < Mpypa Was investigated by Numasawa et al,23 who made

o
similar light scattering measurements.2® They reported that at a matrix
concentration where & o< <$§25172, A, became zero but <S2> of the PS chain was
expanded as in a good solvent because the intra-chain excluded-volume effect was
not screened out. In such a case Cy is not proportional to C* of the matrix solution
and independent of the molecular weight of the matrix polymer. Thus the
universality of the Cy/Cp* dependence of <r?> does not hold. In Fig.IV-14 we can
see the data for PI-140/PI-521 locate above the universal curve and this is
consistent with their result.

Another noteworthy point is the difference between PI/PB/heptane and
PI/heptane solutions being due to the interaction between PI and PB. In Fig.IV-12,
we see that <r2> of PI-140 in the binary PI/heptane system is larger than that in the
ternary systems except for the case where My is much lower than M. This is also
the case for solutions of PI-743 in Fig.IV-13. Thus <r?> of a PI chain in solutions
of the same PI chains is larger than that in solutions of PB . If we regard the PI or
PB solution surrounding a test chain as a "solvent", the quality of PI solution is
better than PB solution at the same concentration: The interaction parameter between
the PI and PB chains is positive. In Figs IV-13 and 15, the difference in <r>
between PI/PB/heptane and PI/heptane is also ascribed to the interaction between PI
and PB chains.

IV-5-3.Comparison with Scaling Theories

-72-



As is seen in Fig.IV-14, <r2>/<r2>0 vs. Cp/Cg* converges on one curve in
the case of M; > My. The theory predicts that if N >>P, the C dependence of
<r2>/<r2>0 is given by eqs I'V-7 and 8 and hence the data of <r2>/<r2>0 in solutions
of PI with various Mg fall on a universal curve of Cy/Cg*. Thus our experimental
results may be explained by considering that the present system is in the regimes i-1I
(eq.I1V-7) and i-1I (eq.1V-8). However there are two disagreements with the theory.
One is that the slope in Figure IV-14 is expected to be two times larger than that in
Pl/heptane binary systems (compare eq 1V-8 with IV-6). Actually we see fhat the
slope is almost the same between binary and ternary systems. This may be
explained as follows. Since our experiment did not cover the wide range of Cy, the
observed slope has not reached the asymptotic value. Second, the theory predicts
that the regime i-1I appears only when N >> P say N/P > 10. But as seen in Fig.IV-
14 the data of M/Mpy < 10 converge. This result is not explained by the theory.

In Figure IV-16, three curves for PI-140/PB-211, PI-140/PB-521, and PI-
743/PB-521 approximately coincide within the experimental error. This behavior
may be explained assuming that these solutions are in the case ii. We conclude that
the theory explains roughly the experimental result, but does not quantitatively.

IV-5-4.M, dependence of <r?>

In this section, the M| dependencies of <r?> for dilute PI in a PB matrix
solution in which Cp=4.84x102 gcm™ and My=3.3x10% are discussed. Figure IV-
17 shows the comparison of <r2>/M for dilute PI in n-heptane and that in the
PB/heptane semidilute solution. We see that the slope is almost the same. This
indicates that the excluded-volume effect for the PI chain is not screened out even in
the semidilute matrix solution. The Nose theory mentioned above predicts that the
excluded-volume effect between blobs still prevails in the regime i-II but the
absolute value of <r2> is smaller than <r?>; by the factor of (Cp/Cp* y2(2v D/A-3v)

(eq.IV-8). The prediction agrees with this experimental result.
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IV-5-5.Conclusions

The main results for the PI/PB/heptane ternary systems are summarized as follows.
1. The mean square end-to-end distance <r?> of PI chain in PB semidilute solutions
changes with PB concentration Cy and PB molecular weight My, it decreases with
increasing Cp at fixed My. In the case of M{/My > 1, <r?> decreases with
increasing My at fixed Cy and <r2>/<r2>0 is approximately expressed by a universal
function of Cg/Cg*. In the case of M{/My < 1, <r?> is independent of M.

2. In semidilute solutions of low molecular weight PB, the excluded volume effect
between blobs is not screened as predicted by the theories of Nose and Joanny et al.
3. <r?> of a PI chain in semidilute solutions of the same PI chains is larger than
that of the PI chain in solutions of PB. This is due to the interaction between PI

and PB.
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V. Dynamic Properties

V-1. Introduction

Molecular dynamics of a flexible polymer chain is affected by several factors,
i.e., hydrodynamic interaction, excluded volume effect, and entanglement.
Influences of these interactions on polymer dynamics change with C and MW. At
infinite dilute solution there is no inter-chain interaction and hence hydrodynamic
interaction and excluded volume effects within a chain play an important role. With
increasing C such interactions are screened and the inter-chain interactions such as
topological interaction begin to exert. Changes of polymer dynamics with C have
been studied mainly by viscoelastic experiments. !

It was almost established that dilute solution properties such as the relaxation
times 7 and the relaxation spectrum can be explained by the Zimm model? rather
than the Rouse model.? In a system in which C > C” but chains are not entangled
yet, it is known that the hydrodynamic effect is screened by an increase in C and as
the result the Rouse model becomes applicable to such an intermediate state. !
However there remains a problem in such application of the Rouse model because
this model essentially assumes an isolated chain. For detailed discussion of
polymer dynamics in such a C regime, it is necessary to study the dynamics of non-
entangled chains in dense systems.

On the other hand for well entangled systems, there is no successful theories
to explain viscoelastic properties since the molecular dynamics in such a system is a
very complicated many-body problem. Especially no theories so far succeeded to
explain the relaxation spectrum. Although the tube model? or its modifications?+6+7
explain qualitatively the viscoelastic properties, these models are not sufficient for
quantitative explanation. Especially for the relaxation spectrum (the distribution of
7) these models predict a sharper distribution than experimental results. 8.9 This

means that in order to apply such models to dense systems (semidilute or
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concentrated solutions), further modification of the models or wholly an entirely
new concept is necessary. To summarize, the Zimm model is applicable to dilute
solution but the theory of the dynamics in dense polymeric systems has not been
established.

From these views, it is significant to examine systematically the polymer
dynamics over wide C and MW ranges from the Zimm like regime to the
entanglement regime. In this chapter the dielectric normal mode process of type-A
chains in various conditions is described. We will also compare the dielectric and

viscoelastic properties as a test of theories.

V-2. Dynamics of Polymers in Dilute Solution

V-2-1. Rouse and Zimm Theory

Rouse modeled a flexible polymer chain by N+1 beads connected by N
springs.? According to this model, the correlation function of r in eq II-22 is given
by

8 <r?> 1

<r(0)-r(t)>=——— %Y —exp(-t/7p) (V-1)
7[2 p:odd p'Z

T, = {N2b%/ (3n2kgT p?) (V-2)

where 7, is the relaxation time for the p-th normal mode; {, the friction coefficient

per bead; b, the average distance between beads; and kgT the thermal energy.
Taking into account hydrodynamic interactions Zimm extended the Rouse

model.2 According to his theory, <r(0)-r(z)> is expressed by the same form as eq

V-1 but with different 7, given by

1, = w2 p3N312 [ (1212kyT 2) (V-3)
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where 7, is the solvent viscosity and lp, the p-th eigenvalue tabulated by Zimm et
al.?

The log €” vs. log @ curve predicted by the Zimm and Rouse theories are
shown in Figure V-1. The difference in £” between the two models is small around
the loss maximum but increases with increasing @. On the other hand the difference
in storage modulus G’ and loss modulus G” between these rﬁodels are appreciable
as shown in Figure V-2,

V-2-2. Molecular Weight Dependence of Dielectric Relaxation Times T

The €” curves of PI in dilute cyclohexane and heptane solutions at 25°C have
already been shown in Fig.IV-4. We evaluated the normal mode relaxation time 7
by the relation 7 = 1/(2xf ) where f,_ is the loss maximum frequency. The resulting
7 values are plotted against M, in Figure V-3. They almost correspond to the first
normal mode relaxation time 7,. The results of PCL and PVL in benzene solution
were also shown in this figure.

According to the Rouse-Zimm theory, the theoretical 7, (the first normal

mode relaxation time) is rewritten by using the intrinsic viscosity as
T, = KM, [nlng /RT (V-4)

where K is a constant which equals 1.22 for the free-draining Rouse model and
0.85 for the non-draining Zimm model. In Figure V-4, the observed 7 for PI, PCL
and PVL solutions in various solvents are replotted against M _[n1n,/RT. Here for
PI, cyclohexane and benzene are good solvents, heptane is a marginal solvent and
dioxane (38°C) is a theta solvent,while for both PCL and PVL, benzene is a
mérginal solvent. No appreciable difference among the systems can be seen in the
figure. This finding indicates that though the excluded-volume effect affects [n], it
hardly affects the functional form of eq V-4. The front factor K is estimated to be
ca. 1.4+0.3, which is close to the value predicted by the Rouse model (1.22) rather

than the Zimm model (0.85).
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Figure V-1. Logarithmic plots of £” against w7, for the Rouse and Zimm
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V-2-3. Mode Distribution: Shape of Dielectric Loss £” Curves

The €” curves for PI in heptane and cyclohexane solutions are compared in
Figure V-5. Their shape does not depend on MW and solvent nature. The £” curves
calculated by the Zimm theory (from eqs II-19,22 and V-1,3) is shown by the solid
line in the figure. It agrees with the experimental ones. This corresponds well to
the result of the viscoelastisity. !

Figure V-6 shows log €” vs. log f plots for dilute solutions of PCL and PVL
solutions. The C is mostly ca. 0.5C* and is regarded to be dilute. The data
reported by Jones et al.!l for dioxane solutions of PCL are also shown in this
figure by a solid line. We see that our £€” curves are much narrower than theirs.
The discrepancy may be due to the polydispersity of the samples used and the
polymer concentration studied by Jones ez al.; their PCL samples had M /M = 4/3
and C of 3wt% is not low enough to be regarded as a dilute solution. Effect of C
on loss curves are discussed in the following sections.

In the same figure, the PCL data are compared with those of PI indicated by
the dashed line. The shapes of the €” curves for PCL and PI are seem to be the
same within the experimental uncertainty, indicating that the mode distribution for
global motions is not affected by the local chemical structure and well represented

by the Zimm model.

V-3. Dynamics of Polymers in Semidilute Solution

V-3-1. Theories of C Dependence of 7

V-3-1-1.Dynamic Scaling Theory
In this section we briefly summarize the dynamic scaling theory.1? In

entangled regime 7 is empirically expressed as
T o { b2N3-3 (V-5)

where the meaning of the parameters are the same as that in eq V-3.
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Zimm.
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If one assumes that the bead corresponds to a blob of radius £ in which there
are g segments, then N and b should be replaced by N/g and &, respectively. Here
we note that g =« CY/(1-3V) and £ o« CY/(1-3Y) With the Stokes theory the friction

coefficient for one blob is given by { = 6zn €. From eq.V-5, 7 is given by!0
T e N3-S C (V3513 (V-6)

On the other hand the relaxation time 7, in dilute solution is given by a modified

Zimm model as*
Ty o N N3V (V-7)

Validity of this equation has been demonstrated by the fact that the proportionality
between 7, and M [N] (o< N3V ) holds as described in the previous section. From

eqs V-6 and V-7 7 /7, can be written as
T /TO o< (C /C*)(3v-3.5)/(1-3v) (V-8)

This equation provides a criterion to check whether chains are entangled or notin a
semidilute solution.
V-3-1-2. Tube Model

The tube model is applicable to well entangled systems . According to Doi
and Edwards? it is assumed that a test chain is confined in a tube with diameter a
which is equal to <r?>%-3 of the chain with M = M,. The longest relaxation time T4

is given by
Ty = L2/ (%?D) (V-9)

where L is the curvilinear length of the tube and D the diffusion coefficient of the
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chain along the tube. If the chain is represented by the Rouse model, eq V-9 is

written as?

Ty = CN3b* | (n%kyT a?) (V-10)

The higher mode relaxation times are expressed by T, =T4 /p? and the end-to-end
correlation function <7(0)er(¢)> has the same form as the Rouse model represented
by eq.V-1. Itis noted that the relaxation spectra predicted by the Rouse and tube
models are the same. Thus these two models predict the same shape of £” curves.
V-3-1-3. Muthukumar-Freed Theory

| Muthukumar and Freed!?:13 proposed a theory to represent the C dependence
of the p-th normal mode (Rouse-Zimm mode) relaxation time 7, in the crossover
region from dilute to semidilute regime considering the inter-chain hydrodynamic
interaction effect. Their expression is

Tp =Ty [1+CAp'K _20.5(CAp-K)1.5 +2(CAp-K)2.0 +...] (V-11)

where 50 is the p-th relaxation time at infinite dilution, A is a constant proportional
to M3V-1  and x is equal to 3v-1; note that A is proportional to [7]. Eq.V-11 can be

approximated by similar to the Martin equation which is
T, = Tpo €XP (A'CIn] (V-12)

This equation predicts that log 7 is proportional to C[7] in the crossover region.
According to the Muthukumar-Freed theory, (2 is different from that
predicted by Rouse model but the end-to-end correlation function <r(0)-r(z)> is the
same as Rouse model function represented by eq.V-1. Thus the relaxation spectrum
predicted by Muthukumar-Freed theory is also almost the same as that by the Rouse

model. Since, as can be seen in Figure V-1, the Rouse and Zimm spectra are
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similar, the difference among the four models, i.e., the Rouse, Zimm, Tube and
Muthukumar-Freed models, is small.

V-3-2. C Dependence of 7

At C is above C*, the dielectric response changes as shown in Figure V-7 in
which the data for (a) PI-743/heptane and (b) PI-140/heptane solutions are shown.
The £” curves shift to low frequency with C indicating that the increase of C slows
down the polymer mobility.

Figure V-8 shows the C dependence of 7 for solutions of PI in (a) heptane
and(b) cyclohexane. In order to determine the critical C above which PI chains are
entangled, we used eq V-6 and T/Mw3'5 is plotted against C in Figure V-9. If
polymer chains are well entangled, a universal straight line may be expected for
different MW data. From the slopes of the indicated bold straight lines, we
determined thelvalue of v to be 0.54 and 0.59 for heptane and cyclohexane
solutions respectively. These values agree well with the v values of 0.544 in
heptane and 0.58 in cyclohexane determined from the [n] vs. M, relations.

Figure V-10 shows the double-logarithmic plots of /7, vs.C[n] (=C/C*) for
(a)PI/heptane and (b)PI/cyclohexane. In spite of the relatively large difference of
MW, all data points for each solvent fall on a single curve. The thick straight lines
correspond to those in Fig V-9. Although the onset of entanglement is rather
ambiguous, the crossover may be seen to occur at C[n] = 10 for both heptane and
cyclohexane solutions.

V-3-3. Comparison with Muthukumar-Freed's Theory

The Muthukumar-Freed theory!2:13 is tested in Figure V-11 with the data of
log 7 for solutions of PI-743 and PI-140 in heptane. In the low concentration
region, log 7 data varies linearly with C| as expected from eq V-12. The parameter
A is determined from the slopes of straight lines to be 70.0 for PI-743 and 26.2 for
PI-140. These values of A conform to 0.29[n] within an error of 6%, so that

A'=0.29.
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Figure V-7. Representative €" curves for (a) PI-743 and (b) PI-140 in heptane
solutions of various concentrations. The dashed lines indicate raw data in
which the increase of €” in the low frequency range was due to ionic
conduction. The contribution of the ionic conduction g4 to € was estimated
by plotting alternating conductivity g against f2. The value of g at f = 0 was
estimated by linear extrapolation and was assumed to be the direct current

conductivity The data points shown here are the corrected ones.
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Figure V-8. Concentration dependence of normal mode relaxation time 7 in
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For cyclohexane solutions of PI, we got A'=0.20 which is smaller than A' of
heptane solutions. This means the dependence of 7 on C is more gentle in
cyclohexane (good solvent) than in heptane (marginal solvent). This result well
corresponds to the scaling prediction, i.e., the exponent in eq. V-6 decreases with
increasing solvent quality.

Figure V-12 compares theoretical and experimental 7 for (a)PI/heptane and (b)
Pl/cyclohexane solutions. The solid lines in this figure show the theoretical 7,
calculated from eq.V-11 with p = 1 and A = A'[n]. We see that the agreement is
good for cyclohexane solutions but not for heptane solutions in which 7 is better
described by the exponential equation (eq.V-12) than eq.V-11.

For PCL-158/benzene solutions we obtained A' = 0.26 which is intermediate
between the values for PI/heptane and PI/cyclohexane solutions. We find that A’ is

related to the solvent quality as shown in Table VII where v and A' are compared.

Table VII. List of Muthukumar parameter A' and excluded volume exponent.

A' v determined from [7] system

0.29 0.54 Pl/heptane
0.20 0.58 PI/cyclohexane
0.26 0.55 PCL/benzene

V-3-4. C Dependence of 7 for the First and Second Modes

From the dielectric normal mode process of PI with the symmetrically
inverted dipole, the relaxation time 7, of the second mode was measured. The
theoretical background will be described in Chapter VI. We discuss the result of 7,

in semidilute solutions of PI.
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We examined the normal mode of dipole inverted PI (I-1 415-415) in
cyclohexane solutions and determined 7, from the peak frequency of €”. Figure V-
13 shows the C[n] dependence of 7,/7, ; determined and /7, (=7,/7; ;) replotted
for Fig.V-12, where 7, , is the second normal mode relaxation time extrapolated to
C — 0. The Muthukumar theory for 7, is also shown in this figure, along with the
theoretical curve for p=1. The agreement between theory and experiment is not
good, though the 7, data in cyclohexane were well described by their theory.

Figure V-14 shows the C[7n1] dependence of 7,/7,. In this figure the
experimental error are as large as about 20% since the 7,/7, data were determined
after many reduction procedures. However the tendency of the increasing ratio with
increasing C is seen. The Zimm, Rouse, and Tube theories predict the ratio to be
3.17 , 4.00, and 4.00, respectively. Experimental values of 1:1/12 in dilute solution
are close to the prediction of the Zimm model but tend to approach with C to 4.0
predicted by Rouse and Tube models. This finding may be interpreted by the idea
that the hydrodynamic interaction is screened and topological interaction becomes
intense as C increases.

V-3-5. C Dependence of the Shape of £” Curves

Figure V-15 shows the reduced €” curves for (a) PI-743 / heptane and (b) PI-
222 / cyclohexane solutions, where €” is reduced by the €”_ , and fby f_. .. We
see that the curves become broader with increasing C. For dilute solutions, the
shape is nearly the same as that predicted by the Rouse or Zimm theories as
mentioned in the previous section. For semidilute solutions, the curves become
broader with increasing C in the high frequency side of the loss peak. The log €”
vs. log f relation is linear over a range of 0.5 decade above f_ ,,. With increasing
C, the slope a (= dlog £"/dlog f) in the high frequency side of the loss curve
increases (the absolute value of « decreases.) Such a change in « is equivalent to
that in relaxation spectrum and hence the fashion of chain motion becomes different

with increasing C due to the inter-chain interaction. However, this phenomenon can

-97-



1.5
o [-1415-415

Muthukumar
-—p=1

log (z, / Ty 0 )

05 F

0 5 10 15 20
C(n]

Figure V-13. C[n] dependence of the ratio of the second mode relaxation time
at C to that at infinite dilution for I-1 415-415 in cyclohexane. For the
comparison the data of 1/10(=71/71_0) shown in Figure V-12(b) are also
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not be explained by any combinations of the Zimm, Rouse, and tube theories which
predict slope of -1/3 and -1/2 and -1/2 respectively. New theory is required to
explain the effect of inter-chain interactions on mode distribution.

Examining the £” curve carefully, we found that the « begins to increase
around C = C* as shown in Figure V-16(a) for heptane and (b) cyclohexane
solution. We also plotted o against C[n] in Figure V-17, in which the a vs. C[n]
plots for various MW almost coincide. This result suggests that the mode
distribution can be expressed by a universal function of C[7n7].

The scaling theory predicts that the C dependence of properties in semidilute
solutions can be expressed by a function of C[n] as far as the frequency region is
not too high. Our experimental result is consistent with the scaling theory.
However, the change in dynamics with increasing C caused by complex inter-chain
interactions have not been explained.

For the broadening of £”, the entanglement effect must be taken into account.
The onset of entanglement estimated in Figures V-9 and V-10 is indicated in Fig, V-
17 by arrows. We see that the broadening occurs below the onset of entanglement.

Figure V-18 shows the C dependence of the shape of £” of PCL-158/benzene
solutions. The broadening of £” curves with increasing C can be seen as observed
above for PI solutions.

V-3-6.Comparison with the Result of Complex Modulus G*

As shown in figure V-2, the Rouse and Zimm models predict the considerably
different G’ or G” curves. Ferry and coworkers!-1415 reported that the shape of
G" in a semidilute solution of polystyrene of C[n] = 2 was perfectly described by
the Zimm model and it changed from the Zimm-like to the Rouse-like shape with
increasing C. In the high C regime the agreement with the Rouse model became
perfect. This transition occurred at C[n] = 3 and even at C about C[7n] = 10 the
shapes of G’ and G" curve still showed Rouse-like behavior. These findings were

interpreted by the screening of hydrodynamic interaction. Yamamoto and Tanakal®
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opposed the view of Ferry er al. and explained the Rouse-like behavior by a
combination of the hydrodynamic interaction and the entanglement coupling. They
considered doubtful the applicability of the Rouse model to such a high
concentration region as C[n] = 10.

The present study has clearly shown that our £” data do not agree with the
Rouse model in semidilute solutions. Although the theoretical £” curves by the
Rouse and Zimm theories exhibit a small difference, we can conclude that the data at
C[n] = 10 differ considerably from the Rouse theory.

Here we list possible origins of the broadening of £” curve.
(1) Shielding of the hydrodynamic interaction.

(2) Shielding of excluded volume effect.

(3) Entanglement effect.

(4) The other inter-chain interactions.
At present we so not have evidences to conclude which interaction affects mainly
the mode distribution. For this problem we will make further considerations in the

following section of this chapter.

V-4. Dynamics of Polymers in Polymer/Polymer/Solvent Ternary
Systems

V-4-1. 17 of Tracer Polyisoprene Chain in Polybutadiene/Heptane Solutions

In this section the dynamic behavior in the PI/PB/heptane system are studied.
It is noted that the PI concentration C; was taken so that the PI chains do not
overlap each other. The concentration Cy of PB was changed widely.

Figure V-19 shows the Cp dependence of 7 for PI-140, PI-743, and PI-651 in
PB semidilute solution. The values of 7 in PI/heptane binary solutions are also
plotted against C; with filled symbols. It is seen that at fixed molecular weight My
of PB, 7 of PI increases with C and at fixed Cy, 7 increases with My. Since Cj is
kept less than C*, the increase in 7 is caused by overlapping or entanglement

between the PI and PB chains.
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V-4-2. Expression of 7 by Scaling Theory

The Cy and My dependence of 7 were analyzed in terms of the blob model for
two extreme cases: My >> My and M| << M.
(1) My >> My

For dilute solutions of the PI chain, the relaxation time 7, is given by the

Zimm theory (cf. eq V-3):
Ty = N,<rg?>32/ (kgT) (V-13)

where <ry2>1/2 is the end-to-end distance at infinite dilution. For the ternary
solutions, this equation may be correct when Cy is smaller than Cg*. As was
demonstrated in the study of diffusion, we expect that even in the range of Cg>Cp*,
eq V-13 may hold if M;>>My. Under such a condition, the PB chains move much

faster than the PI chain and act as solvents:
T = ng<r2>32) (kyT) (V-14)

where 715 is the viscosity of a PB solution and <r2>1/2 the end-to-end distance of
the PI chain in the PB solution. assuming that the front factor of eqs V-13 and V-14

are the same, we can derive
Tty = (Ng/n,) (<r2>/<ry?>)3/? (V-15)

The ratio <r2>/<r2>0 determined in section IV-4 and was represented approximately

by a universal function f of Cylnly (=Cy/Cg*) in the case of M{>Mp:
<rt>/<rt>, = f(Cxlnly) (V-16)

It is well known that 775/7 in semidilute solution is expressed approximately by a
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universal function g of Cyx[n]g:!?

/N, = g(Cylnlp) (V-17)

Combining eqs V-15, 16, and 17, we obtain

t/1y, = F(Cglnlg) (V-18)

where F, is a function. This equation predicts that 7 of the single PI chain in
various MW matrices of PB is expressed by a universal function of Cg[n]y.
(2) My << M.

Next we consider the opposite case of My << My. In this case the matrix PB
chain is regarded as a fixed network and the PI chains move under constraints of the
network. The tube model predicts that 7 of PI may be determined by the tube
diameter @ which is equal to the distance between entanglements of PB chains and

10,18-21

the friction coefficient {,,,, per blob. According to de Gennes and recent

experimental data, 2122

a is proportional to the blob size & of the PB matrix
solution and {,,,, is also proportional to the blob size as is given by the Stokes law
for a non-draining sphere. We assume that the size of the blob of PI is equal to that

of PB. Then 7 is given by

T = 7,,,,f (N/gp) (V-19)

where f' represents a function and Thlob (< §B2' Cblob) is the relaxation time for the
single free blob; Ny, the degree of polymerization of the PI; and gy, the number of
the monomeric unit of PB in the single blob. 7, in eq V-13 is scaled by the blob

and is rewritten as

Ty 2 Tyop(NV1/gg)*Y (V-20)
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From eqs V-19 and V-20, 7 is written in the form:

T = 75 Fy(Cglnl) (V-21)

where F2 is a function of Cx[7];.

V-4-3. Analysis of Experimental Dielectric Relaxation Time 7

In order to test eqs V-15, 17, and 18 we measured the relative viscosity
Ng/N, and plotted in Figure V-20(a). These data were then plotted against Cy[n]g
in Figure V-20(b). We see that /7 is expressed approximately by a universal
function in accordance with the result reported by many authors,!7-23-25 though the
curves slightly shift downward with decreasing M. The weak My dependence of
Ny/N, may be considered to be caused by the poor solvent quality.26-28 However
we ignore the effect here.

In Figure V-21 eq.V-18 is tested by plotting 7/7, double logarithmically
against Cz[nly. The data points for M/My > 3.52 fall on a single curve. Thus we
conclude that there is a regime in which eq V-18 holds.

Obviously this does not necessarily mean that the PI chain behaves Zimm-
like. Thus we checked eq V-15 directly. Figure V-22 shows the Cy dependence of
(1/7y)(<ry2>/<r?>)3/2 and ng/n,. If eq V-15 is valid, the (7/7y)(<ry2>/<r?>)3/2
and ng/n, curves should coincide. As is seen in the figure, the relative viscosity is
slightly larger than the (7/74)(<r?>/<r?>)3/2 for all systems. The discrepancy may
be attributed to the following two origins: (1) the PI chains are not Zimm like
depending on Cp and (2) the macroscopic viscosity differs from the local viscosity
for the PI chain.

Figure V-23 shows the test of eq V-21 made by double logarithmic plots of 7
vs. Cgzlnl;. The data points for M /My < 1.43 are represented by a single curve,

indicating that there exists a regime where eq V-21 holds.
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(b)

Figure V-20. (a) Double-logarithmic plots of relative viscosity 1g/n, vs. PB
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Figure V-21. Double-logarithmic plots of 7/7; vs. Cg[n]g. The ratio M{/My

is indicated in the curve. The symbols are the same as in Figure V-19.
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Nemoto et al.2? showed that the sedimentation coefficient S of PMMA in high

MW PS solutions was expressed as
S/SCO0.1M_(PS))=H(M /M (PS)) (V-22)

where §(0.1M _(PS)) indicates the sedimentation coefficient of PMMA with MW
equal to 0.1M _(PS) and H is a function. We see that this equation has the same
functional form as eq (V-20) because S(0. 1M _(PS)) and M/M _(PS) correspond to
Tplob and Ni/gg,respectively.

To summarize, eqs V-18 and V-21 are valid for the cases M{/Mg >3.52 and
M{/Myz < 1.43, respectively. The data of 7 for PI-140/PB-63 system (M{/My =
2.22) are expressed by neither eq.V-18 nor eq. V-21. In this case the motion of PI
chains is in the crossover region between the Zimm-like and reptation regimes,
which are discussed in the following sections. The existence of the Zimm-like
regime in condensed systems was reported by measurements of diffusion
coefficients.21-30.31

V-4-4. General Representation of 7 for Ternary Systems

In this section we attempt to express T more generally including the case of
M; = Mg. In the previous section we indicated that 7 is expressed by a universal
function of Cy[n]g and Cg[n];. In the ternary system examined here, 7 should be a
function of N|, Ny and Cy. If the elementary process of the dynamics is the motion

of the blobs, T may be scaled by a form

T= Tyt (Ny/8p, Np/gp)
= 75 Y(Cylnl, Cylnlp) (V-23)

where ¥ and ¥' represent functions. If this equation holds, the observed data
points of 7 for various M, My, and Cg should fall on a smooth universal surface in

the three dimensional space of 7 vs. Cg[n]; vs. Cg[nlg. Figure V-24 shows a
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contour diagram in which the iso-7/7, lines are plotted on the plane of Cyz[n]; vs.
Cglnlg. The plotted points on the figure represent the interpolated values. We see
that the contour line is smooth and monotonous over wide ranges of M}, My, and
Cg. This fact indicates that eq V-23 holds at least in the Cy range examined here.

Cglnl; Dependence of 7

Figure V-25 shows the cross-sectional view of Figure V-24 at Cg[nlg =
constant. Here we recall that the parameters of Cxz[n]; and Cyz[n]y correspond to
the number of blobs in the PI chain and that in the PB chain, respectively: Cyz[n]; =<
(Ny/gg)3¥-! and Cyn]y = (Np/gp)3¥-!. The number of blobs corresponds to either
the number of beads in the bead-spring model or the number of entanglement of the
tube model depending whether the test chain is entangled with the matrix chains.
Thus, Figure V-25 is equivalent to the M; dependence of 7/7 at fixed M. The

N,/gg dependence of 7 is generally expressed as
T < TyopN/8p)* (V-24)

where x = 3v, 2, and 3, for the Zimm, Rouse and tube theories, respectively. Here
we neglected the difference of front factors of eq.V-24 for these theories. Then the

Cglnl; dependence of 7/7( is given by

T/Ty = (Cyxln]E-3V/Gv-D (V-25)

where we have used the relation 7y, o< 53 (eq.V-11). With v = 0.55 determined in
the previous section, the slopes of the log(7/7) vs. log(Cyz[7n]y) plot for x = 3v, 2,
and 3 were calculated and indicated in Figure V-25 with the notations of Zimm,
Rouse, and Reptation, respectively.

When log(Cg[n]g)=0.3, the matrix PB chains are not entangled. In this case
the slope in the range of log(Cyx[n];) <0.7 agrees with the Rouse theory, but in the

higher Cg[n]; range the slope becomes zero, corresponding to the Zimm theory.
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Obviously the slope must become zero at sufficiently low Cy. Thus there exist two
regimes in which 7 conforms to the Zimm theory. The regime where the slope
agreed with the Rouse model is considered to appear as a result of the transition
between two Zimm-like regimes where chains are in pure solvent and polymeric
viscous media.

In the case of log(Cy[71]5)=0.9 where the matrix PB chains are entangled, the
slope in the range of 0.5 < log(Cg[n]p) < 1.0 is close to that for the reptation
model. However, with increasing Cz[n]; the slope decreases and appears to flat.
These facts indicate that if the dilute guest chain is much longer than the matrix
t.21

chain, it behaves like a Zimm chain whatever the matrix is entangled or no

Cglnlg Dependence of 7/7_

Figure V-26 shows the cross sectional view of Figure V-24 at
log(Cxz[n]{)=constant, namely the My dependence of /7, at fixed M;. The data of
matrix viscosity 715/7, are compared with the 7/7, data in this figure. With
increasing Cy[n]p the matrix viscosity increases exponentially but /7, becomes
independent of Cyz[n]g eventually. In this high Cz[n]g region the PB chains form a
temporary network and the PI chain moves by the reptation mechanism irrespective
of the macroscopic matrix viscosity. Butin low Cg[nly the 7/7, of PI becomes

proportional to the matrix viscosity.

V-4-5 M; Dependence of 7

In this section we discuss the M| dependence of 7 at fixed Cy and My
specifically at Cy = 4.84x10°2 gem™3 and My = 3.3x10%. From the Cy dependence
of Ng/n, shown in Figure V-20a, we see that the PB chains are not entangled in this
conditions. Figure V-27 compares the My, dependence of 7 of the PI molecules
dissolved in heptane and that in a PB/heptane semidilute solution. The plot for
dilute heptane solutions is linear with slope 1.68. This behavior can be explained
by the modified Zimm theory (eq.V-13) in which the excluded-volume effect is

taken into account (v = 0.55). The slope for the ternary systems in high M| region
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is the same as that for the binary systems. However in the low M, region, the slope
is about 2 as predicted by the Rouse theory (eq.V-2). These findings may be
interpreted as follows: when My is much higher than Mg, the PI chain behaves like a
Zimm chain, but when M| is comparable to My, the hydrodynamic interaction is
screened and the PI chain behaves like a Rouse chain.

Figure V-28 shows the double logarithmic plot of 7/7; vs. M. This figure
corresponds to Figure V-25. The value of (ny/n,) (<r2>/<ry2>)3/2 are indicated in
this figure to check eq.V-15. As seen in the figure, these value are seen to be larger
than the relaxation time of PI.

V-4-6. Classification of the Motion of PI Chain

Here we classify the dynamical states in the ternary system studied in this
section. The crossover points between the regimes in which the behavior of 7
conforms to the Zimm, Rouse, and the tube theories are determined by using
Figures V-25 and 26 and plotted on the log Cy[n]; vs. log Cy[nly plane (Figure V-
29). The concentration at which PB chains begin to entangle each other (dashed line
in Fig.V-29) is roughly estimated from the curves shown in Figure V-20(b). The
crossover is given by log Cy[nly = 0.4; above which the slope of the plotin Figure
V-20(b) becomes 3.5/(3v-1). For Cgxlnl; smaller than unity, the dimension of the
PI chain is smaller than the screening length of PB solutions. Thus the PI chain
may behave like a Zimm chain. When Cgln]; >> Cxlnlg the PI chain moves like a
Zimm chain, but in the opposite case of Cg[n]; << Cylnlp, it moves by the
reptation mechanism.

V-4-7. Shape of €” Curves

In section V-3 we demonstrated that the shapes of £” curves for PI (binary)
solutions change with the concentration (see Fig. V-15). For ternary solutions the
Cy dependence of the shape of £” curves is shown in Figure V-30 (a) and (b). We
see that the shape in PI-743/PB-521 (b) changes with Cy but that of PI-743/PB-211

(a) does not in the similar Cy range.
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In the previous section we have classified the PI chain motion by using two
parameters Cy[n]; and Cy[nlg. This sets of two parameters (log Cg[n]y, log
Cglnlg) for the PI-743/PB-211 system in Figure V-30(a) changes from (0.14,
-0.15) to (0.83, 0.53) but that for the PI-743/PB-521 system in Figure V-30(b)
from (0.36, 0.31) to (0.72, 0.67). By plotting these coordinates on the plane of
Fig.V-29, we see that the former system is in the Zimm and transition region, but
the latter system in the region where the entanglement starts. Thus the change in
the relaxation spectrum occurs at the transition regime. For the binary systems we
observed that the broadening of £” started at C = C* and completed at C = C.. The
regime of C* < C < C, corresponds to the transition regime of polymer chain
dynamics from the Zimm-like behavior to the reptation mechanism. Thus, the
observed change of the relaxation spectrum in ternary system is consistent with that

in the binary system.

V-5. Dynamics of Polymers in Condensed Systems

V-5-1. Dielectric Relaxation of Dilute Polyisoprene in Undiluted Polybutadiene

Matrices

In the above section, we examined the C dependence of the shape of the &”
curves. In order to understand the broadening phenomenon from another aspect,
the dielectric behavior of blends consisting of a trace amount of PI and undiluted
polybutadiene (PB) was also examined. We expect that if the MW of matrix PB is
sufficiently low, the dynamics of PI will correspond to that in dilute solution
examined in section V-2. But in the case of PB having an MW comparable to that of
PI, it will be equivalent to that in concentrated solution. Our interest is to detect at
what MW of PB such a transition occurs.

We investigated the dielectric normal mode process for two series of systems:
(a) and (b). The series (a) is composed of PI-49 (5wt% ) in various PBs with M,

from 7.1x102 to 8.9x104, covering the non-entangled to entangled regime; the
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characteristic MW of PB (M B) reported by Colby et al.32 is 6.38x10%. Another
series (b) is all non-entangled systems which are blends of 10wt% PI-6 dissolved in
PB-0.7 or PB-6. By using [n] data in dioxane (8 condition)33, we roughly
estimated the C[n] to be 1.3 for P1-49(5wt%)/PB systems and 0.9 for PI-6(10wt%)
/PB systems. Since in section V-3 we showed that the broadening of £” curves
began at C[n] = 1~2, the systems can be regarded as dilute solutions in PB.

In Figure V-31(a) and (b), the master curves of £” at 40°C for PI-49/PB and
PI-6/PB systems are shown. Here it is reminded that PI possesses both the type-A
and B dipole components. In undiluted high MW PI, the £” peaks due to these
components were observed in well separated frequency ranges.34 In the present
system, the observed loss peaks are attributed to the normal mode process. In
Fig.V-31 (b) we see the contribution of the segmental mode of PI and PB in the
high frequency range. For the comparison of the shapes of £” curves of low MW PI
it must be necessary to take into account the high frequency dispersion contribution.

The reference temperature T, was 40°C and €” data from 80 to -30°C were
superposed. In this temperature range the time-temperature superposition worked
well. Figure V-32 shows the temperature dependence of the shift factor ap (for T =
313 K). Colby et al.3? reported that a; for the viscoelastic data of bulk PB
conformed well to the WLF equation. Our data come very close to theirs shown by
a solid line in the figure, indicating that for our PI/PB blends the phase separation
did not occur in this temperature and MW range. The a; value for PI/PB-0.7 at the
lowest temperature deviates to the downwards slightly from the line. This indicates
that the reference temperature of this blend changes with MW of PB. However, no
correction to the iso-free-volume state was made since a; data over a wide range of
temperature are unavailable.

V-5-2. Comparison of the Shape of £” Curves for PI/PB Blend Systems

The comparison of the shapes of £” curves is shown in Figure V-33(a) for PI-

49/PB blends and (b) for PI-6/PB blends. We see that the £€” curve becomes
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broader with increasing My as seen for PI solutions in section V-3. It is noted that
for such non-entangled systems as shown in Figure V-33(b) similar behavior is also
observed. The contribution of the segmental mode process in PB-0.7 system must
be larger than that in PB-6 system, since the separation between the peak
frequencies for the normal mode and segmental mode processes in the former is
smaller than that in the latter. Thus without correction for subtracting the high
frequency contribution we can conclude that the peak for the normal mode becomes
narrower with decreasing MW of PB even in the non-entangled system and hence
the broadening is not due to the entanglement effect. Another important point is
that the excluded volume effect should be weak in such low MW PI-6. Thus we can
also rule out the excluded volume effect from the origins of broadening In Figure
V-33(a) we also showed the data of bulk PI-49. The shape of £” of blends
converges to that of bulk system with increasing My.

Comparing with the behavior of PI solutions (see Fig. V-15 and V-16) we see
that My affects the mode distribution as C does. The broadening of the € curves
for PI-49 starts at My = 3~6K.

V-5-3.Comparison of the Shape of £€” Curves for Bulk Systems

Figure V-34 compares the shapes of €” curves for bulk PI of MW=3.5><103,
9.49%103 and 20.7x103 which are the reported data of Yoshida et al.3> The
characteristic molecular weight M of PI was reported to be 10K 36 and hence PI-21
is entangled but PI-04 and PI-09 are not. The shape of the £” curve does not

change with MW for log(w/w_ . ) below 1.5. It is noted that the data of PI-4

max
contain the contribution of the segmental mode process in the high frequency
regime. By subtracting the contribution from the normal mode dispersion curves,
its shape may become slightly sharp. Imanishi et al. reported that if the
contribution of the segmental mode is subtracted, the £€” curve of the normal mode

narrows with decreasing MwW.37 According to the Rouse and Zimm models, as the

number of beads decreases, the theoretical £€” curve becomes narrower than those
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for the chains consisting of many beads. Due to this effect, it is difficult to discuss

about the shape of £” for low MW PI in the bulk system. However if we ignore the

slight effect of the segmental mode, we may conclude that the entanglement effect is

not the direct origin of the change of €” curves. This conclusion agrees with the

result obtained in the previous section.
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Figure V-34. Comparison of the shape of £” curves for bulk PI with
MW=3.5><103, 9.49%103 and 20.7x103 reported by Yoshida ez at.33
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V-6 Summary of the Results for the Shape of &"

V-6-1. Relation between the Results of Bulk, Blend and Solution Systems

The behavior of the loss curves in various systems examined in the present
experiments is summarized below.

In dilute solution systems the shape of the £€” curve agreed well with the
Zimm model as reported by Ferry et al.!-1%:13 for the viscoelastic behavior of PS
solution. In semidilute solutions we observed that the £” curve broadens with
increasing C. The onset of the broadening occurred in the C range below the
entanglement concentration C, that is defined as C above which the C dependence of
7 conforms to the 3.5 power low (eq V-6).

In the PI/PB/heptane ternary solutions, the broadening is observed when the
system is in the region of transition from the Zimm-like to the entangled regime.

In the PI/PB blend systems the onset of the broadening is observed at the
critical value of MW of PB. Especially in the non-entangled systems of PI-06/PB
blend, the broadening is also observed. From this result we conclude that neither
entanglement nor excluded volume effect contributes to the broadening of the £”
curve.

V-6-2. Discussion

In this section origins of the broadening of £” curves are discussed. We have
already ruled out the entanglement effect and the excluded volume effect from the
possible origins. Another possibility is the shielding effect of hydrodynamic
interactions. In dilute solutions, it is concluded that the shape of €” (including G’,
G") well conforms to the theoretical curves given by the Zimm model and the 7,/7,
ratio is also close to the value predicted by the same model. Thus the hydrodynamic
interactions are prevailing in dilute solutions.

In the semidilute regime where the hydrodynamic interaction is shielded and
especially in the case that chains are not entangled yet, the shape of relaxation

spectrum is expected to agree with the prediction by the Rouse model. Ferry ez al.
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reported that the viscoelastic spectrum for chlorinated diphenyl solutions of PS in
the semidilute regime agreed with that of Rouse model. However, in the present
study the £” curve in the range of Cc*<C <C, was broader than the theoretical curve
predicted by the Rouse theory, indicating that the change is not caused by the
shielding effect of hydrodynamic interaction.

From the results mentioned above, we consider that the broadening of the £”
curve occurs as a result of the restriction of the Rouse like motion by interactions
with surrounding chains. For solution systems we have concluded that C[n] is a
major parameter affecting the change of spectrum. Since C[n] represents the degree
of chain overlapping, the restriction of the free motion can be described by this
parameter. In addition, the result for the PI/PB blend system in which the &”
broadens with increasing My supports our speculation because the increase in the
MW of the matrix PB causes the restriction of a free motion of PI chains.

What kind of inter-molecular force causes the broadening? We speculate the
restriction is caused by the viscoelasticity of the matrix medium. When the medium
is a simple viscous fluid a chain in such a solution is only damped by the viscosity
and behaves as a Zimm like chain. In the case that the matrix is composed of
polymer chains exhibiting viscoelasticity, the motion of the probe chain will be
restricted by the elastic force due to the matrix molecules. The elasticity of media
may occur not only by the topological interactions but by the thermodynamic
osmotic pressure to minimize concentration fluctuation. In fact Yao et al.38
reported a broad €” curve for styrene-isoprene block copolymers in which the
normal modes of the PI block are heavily restricted by both topological interactions
and thermodynamic osmotic pressure. We expect that the elastic force between the
test chain and medium is the origin of the broadening of the £” curve. A theoretical

approach based on this picture is described in Chapter VI.
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VI. Investigation of Polymer Chain Dynamics by Using
Dipole-Inverted PI Chains

VI-1. Introduction

In the previous chapter we discussed the change of dielectric relaxation
spectrum for the fluctuation of the end-to-end vector in various surroundings which
cause changes of inter-chain interactions. However, for the origin of such a
change, our understanding was based on the speculations. For investigation of
details of the chain dynamics, it is most efficient to use some labeling techniques
and examine various dynamic quantities for a particular segment and/or a chain
involved in the system. Dielectric labeling can be attained for a special sort of
chains possessing type-A dipoles inverted once at a particular point in the chain
contour!-4 (cf., Figure VI-1). The dielectric relaxation process of those chains
reflects fluctuation of a vector Ar = ry-r,, with r; and r, being the vectors that
connect the dipole-inversion point and the two chain-ends. Namely, the chains
having differently located dipole-inversion points should exhibit different relaxation
processes even if the molecular motion itself is the same. In this sense, the dipole-

inversion works as the dielectric labeling.

Figure VI-1. Schematic representation of a PI chain having asymmetrically

inverted dipoles.
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On the basis of the above ideas, we have anionically synthesized an unique
series of linear cis-polyisoprene (PI) chains having almost the same M but dipole-
inversion at different locations and examined their dielectric relaxation processes.
Specifically, analyses for these processes enabled us to obtain an entirely new and
interesting information on the eigenfunctions which describe the displacement of the
backbone atoms for each mode.4 In this chapter we describe the dielectric data for
such dipole inverted PIs in the bulk and dilute solution systems, and the resulting

information for the eigenfunctions.

VI-2. Theory of Dielectric Relaxation of Dipole-Inverted Chains

We here consider a linear Gaussian chain composed of N segments in which
the type-A dipoles are inverted once at the n*th segment (Figure VI-1). We can
extract some detailed information on the motion of this chain from its dielectric
data, as explained below.

The total polarization of the dipole-inverted chain at a time ¢ is proportional to
a vector Ar(t) = r (1) - ro(#), with r(z) and r,(t) being the vectors connecting the
n*th segment and the two chain-ends. Thus, its dielectric relaxation function ®(7)
normalized to unity at t = 0 is written in terms of Ar and the end-to-end vector r

asl-3

<AF(1)e Ar(0)>
o) = (VI-1)

<Ar?>

(Here, we have used a relation <Ar?> = <r?> valid for a Gaussian chain.) The

dielectric loss factor £” is written in terms of & as?

“ dd(r)
sin wt dt (VI-2)

£'(w) = -Ae [
0 dt

Here, @ and A€ are the angular frequency and the dielectric relaxation intensity,
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respectively.
As can be seen from eqs VI-1 and VI-2, the dielectric normal mode process of
the dipole-inverted chain reflects fluctuation of Ar. We here introduce a local

correlation function2:3:6
C(n,t; m) = (1/b2) <u(n,tyeu(m,0)> (VI-3)

with u(n,t) being a bond vector for the n-th segment at time ¢ and b2 = <u?> (the
mean-square segment size). This function represents an orientation correlation of n
and m-th bond vectors at two separate times, so that it contains detailed information
for the global chain motion. Assuming a very rapid orientation-randomization for

two bond vectors at the chain-ends, we have a boundary condition for C(n,t;m),
C(n,t; m)=0 forn,m=0, N (VI-4)

For a Gaussian chain having no isochronal orientation-correlation for different bond

vectors, we may write the initial condition as2-4.7

N prn prm
X sin sin (VI-5)

2
C(n,0;m)=94,, =—
N p=1 N N

From eqs VI-1 and VI-3, the relaxation function @ is related to the local

correlation function as

1 n* N n* N
&, n*) =—1[) dn-[ dnl [/ dm - [ dm] C(n,t; m) (VI-6)
N
0 n* 0 n*

This relation clearly indicates that @ and thus €” (cf., eq VI-2) change with n* even

if the molecular motion described by C(n,#; m) is the same. In other words, using
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eq VI-6 to analyze the n*-dependent £” data of the dipole-inverted PI chains, we can
find features of C(n,t; m), i.e., how the orientation-correlation of two particular
bond vectors changes with time.

For convenience of the above analysis, we expand C(n,t; m) at long time
scales with respect to its eigenfunctions fp(n) with the mode numberp =1, 2,.., N.
The functional form of fp(n) is determined by a time evolution equation for C(n,t;
m), i.e., by a nature of the global chain motion. As discussed in Appendix A, we

may use f and generally write C(n,t; m) in a form
p

2 N
Cn,;my= — X fp(n) fp(m) exp(—t/’tp) (VI-7)
N p=1

Here, 7, is the p-th relaxation time being the reciprocal of the p-th eigenvalue. The

p

fp' s involved in eq VI-7 satisfy a boundary condition (cf., eq VI-4)

fp(O) = fp(N) =0 (VI-8)
and the normalization condition given by eq VI-5.
N

L f (n)f,(m)= Onm (VI-9)

2
N p=1

From eqs VI-1, VI-2, VI-6, and VI-7, we find

N 01,
g"(w; n*) = L g,(n*) —— (VI-10)
p=1 1+ w22

p

Here, gp is the intensity of the p-th dielectric mode,
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2A¢€ n* N
[/ f,(n)ydn- [ f,(n)dn]? (VI-11)

N2 0 n*

gpn*) =

Equation VI-11 indicates that the integral of the p-th eigenfunction fp is evaluated
from experimentally determined Ep- For convenience of this evaluation, we classify
fp in two categories: Two ends of a linear chain should move in an equivalent
fashion, so that fp should be either symmetrical (fp(n) = fp(N-n)) or anti-
symmetrical (fp(n) = -fp(N-n)) with respect to the chain center (n =N/2). The
symmetrical fp are classified as odd fp (with p = 1, 3,..), and the anti-symmetrical

fp, as even fp (p =2, 4,..). Then, as seen from eq VI-11, an integral of fp defined

by
V2o o
Fp(n*) = —— [ f,(n)dn (=0 for n* = 0) (VI-12)
N o

is evaluated as

F (N/2)-F(n*)= £[g (n*)/4A£]V2 (= 0 for n* = N/2); p = odd (VI-13a)

and
Fp(n*) =z [gp(rz"‘)/élé\e]l/2 (= Oforn*=0); p=even (VI-13b)
When gp(n*) is obtained for dipole-inverted PI chains with various n* values
=0, ny*, ny*,..., N/2 increasing in this order, we can choose either +[gp/4A€]1/2

or -[gp/4A:3]1/2 for n* = 0 in eq VI-13a and for n* = n;* in eq VI-13b, because
fp(n) and -fp(n) are equivalent eigenfunctions and thus either Fp(n*) or -Fp(n*) can
be used as the integral. For definiteness, we choose +[gp/4A£]1/2 here. With this
constraint, a requirement of smooth and continuous n* dependence of Fp(n*)
unequivocally determines the signs of the terms [gp(n*)/4A(3]1/2 in eq VI-13 for any
other n* values, if the intervals between the neighboring »n* values are sufficiently

small. This was the case for the determination of Fp(n*) {(p =1 ~ 3) made here for
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seven n* values in a range 0 < n* < N/2 (cf., Table III). For n* > N/2,
eigenfunction symmetries lead to relations, Fp(n* = -Fp(N-n*) + 2Fp(N/2) forp =
odd and Fp(n*) = Fp(N-n*) for p = even. Thus, from gp (p =1 - 3) obtained for 0
€ n* £ N/2, we unequivocally evaluated Fp(n*) in an entire range 0 < n* < N

through eq VI-13.

VI-3. Dipole Inverted Chain in Bulk Systems

VI-3-1. £” Curves in Bulk Systems

Figure VI-2 shows the frequency (@) dependence of €” at 40°C for PI chains
with various locations of the dipole-inversion points.® The time-temperature
superposition worked very well, and the £” data were reduced at T, = 40°C. The
shift factors ap for the dipole-inverted PI chains were identical to those for regular
PI chains without inversion, suggesting that the small coupler units involved in the
former did not affect the chain motion. In the temperature range examined, the
amount of the shift was less than one decade and ambiguities due to the shift were
negligibly small.

Those PI chains having M = 10Me (Me = 5000 for bulk PIl'z) are rather
heavily entangled in their monodisperse bulk systems. In Figure VI-2, the
respective €” curves are shifted vertically to avoid heavy overlapping of the data
points. Details for differences of the curves are more clearly examined in Figure
VI-3, where the data points are not shown and no vertical shifts are made.

As seen in Table III, the molecular weights are close but not exactly the same
for the PI chains examined. Correspondingly, the longest relaxation time 7 for the
local correlation function is slightly different for those PI chains. Throughout this
section including Figures VI-2 and VI-3, we use the I-1 24-24 sample with M =
47.7 x 103 as a reference and shift the £¢” curve of each PI sample along the w axis
by a factor gy = (M/47.7x103)3-3 to correct the difference of 7, Here 7 M35

for monodisperse chains. 10 The log ay values are summarized in Table VIII (a).
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Figure VI-2 Frequency (@) dependence of the dielectric loss factors £” at
40°C for dipole-inverted PI chains. Small differences of the longest relaxation
times T, of the PI chains are corrected by shifts of the £” curves along the ®
axis by factors ay = (M/47.7x103)3-3. (The I-I 24-24 chain with M = 47.7 x
103 was used as a reference for this shift.) Respective curves are further

shifted vertically to avoid heavy overlapping of the data points.
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Figure VI-3 Comparison of the £” curves at 40°C for the dipole-inverted PI
chains. Only the curves smoothly connecting the data points are shown, and no
vertical shifts are made. As done in Figure VI-2, horizontal shifts by factors

ay = (M/47.7x103)3'5 are made to correct small differences of 7.
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The small coupler units involved in the long PI chains should have no effect
on the global motion. Thus, after the small correction for 7, (with | log ay | <0.1
except for I-1 50-6 with log @y, = 0.2), we can consider the motion of the PI chains
to be exactly the same. Nevertheless, large differences of the £€” curves are
observed in Figures VI-2 and VI-3, because of the dielectric labeling due to dipole-
inversion: As the dipole-inversion point moves from the chain end (I-1 49-0) to the
center (I-1 24-24), the £” peak intensity decreases at log @ = 2.1 and increases at
log @ = 2.7, and the shape of the £"” curve first becomes broad and bimodal and
then becomes narrow again. These changes correspond to those in the dielectric
relaxation mode distribution, and provide us with information for the chain motion

through eqs VI-10, VI-12, and VI-13.

Table VIII Correction Factors for Small Differences of the
Longest Relaxation Times 7, for (a) bulk system and
(b) I-1 / PB-0.7 system.

Sample log ay

(a) bulk (b) I-1 /PB-0.7

I-149-0 0.035 0.017
I-1 50-6 0.227 0.112
1-135-9 -0.109 -0.054
I-135-14 -0.003 -0.002
I-1 33-16 0.038 0.019
I-128-18 -0.010 -0.005
I-1 24-24 0 0

In Figure VI-4, the £” curve for I-I 49-0 (after the correction for 7;) is
shifted along the w-axis by a factor Ay = 3.9 and compared with the curve for I-I
24-24. The two curves are indistinguishable, meaning that the relaxation mode
distribution is the same for the I-I 49-0 and 24-24 chains but the dielectrically

observed relaxation time is 3.9 times shorter for the latter.1%:14 As seen from
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Figure VI-4 Comparison of the £” curves at 40°C for the I-I 49-0 and I-I 24-
24 chains. The curve for the former is shifted along the w-axis first by a factor

ay = (48.8 /47‘7)3-5 =1.083 (a correction for difference of 1) and further by a

factor Ay = 3.9.
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eq VI-13, only odd eigenmodes of the chain motion contribute to £” of the I-1 49-0
chain (with n* = 0), while only even modes contribute to €” of the I-1 24-24 chain
(with n* = N/2). Thus, the sharp £" peaks for these PI chains correspond to the
first and second modes with the relaxation times 7; and 7, (= 7,/3.9; cf., Figure

VI-4). Specifically, the 7, and 7, values are evaluated from the peak frequencies as

7,=8.13x103s, 7, =2.09x 103 5 (VI-14)

VI-3-2. Experimental Determination of Eigenfunctions in Bulk Systems

For evaluation of the integrals Fp of the eigenfunctions fp, we have to
decompose the £” curves of the dipole-inverted PI chains into the contributions
from the eigenmodes (cf., eqs VI-10, VI-12, and VI-13). Although we may do this
with various methods, we here use a linear-least-square-fitting method that enables
us to analyze the £” data with the highest accuracy attainable.

F, and F, are evaluated from the £” data at low @ where the contribution
from all higher p-zh modes with p 2 3, Zp23 gp(n*) Dp(w) with Dp(co) = corp/(1+

wzrpz) (cf., eq VI-10), is practically identical to its low-w asymptote,

G; 0= [ = gp'rp] w (VI-15).
pz3

At those low @, eq VI-10 becomes a linear function of three variables g;, g,, and

G, yielding

£"(w; n*) = g,(n*) D,(®) + g,(n*) Dy(®) + G3(n*) @ (VI-16)

Note that the locations of the two single-relaxation functions D, (®) and D,(w) are
determined by 7, and 7, given in eq VI-14. Thus, as explained in Appendix B, we
made a standard linear-least-square-fit with eq VI-16 to determine g,, g,, and Gg.

Figure VI-5 demonstrates the results of the mode-decomposition. The
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Figure VI-5. Results of the mode-decomposition of the £€” data (unfilled
symbols) for the dipole-inverted PI chains at 40°C. Linear-least-square-fit
with eq VI-16 was made for the decomposition. The dash-dot and dashed
curves indicate the contributions from the first and second eigenmodes g, D, (@)
and g,D, (@), respectively. (D, (@) = o7 /(1+ ®?7,2).) The contributions
from all higher p-th eigenmodes with p = 3, £p23"(co), is shown with the filled
symbols. The thick solid curves indicate the re-calculated €" = g,D; + g,D, +
8p23", with ep23” being evaluated for the thin solid curves that smoothly

connect the filled symbols.
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unfilled symbols indicate the £” data, and the dash-dot and dashed curves, the
contributions from the first and second modes g, D, and g,D,, respectively. The
contribution from all higher p-th modes with p 2 3, 8"p23 =¢"-g,D; -g,D,, is
shown with the filled symbols. We see that the prerequisite of the fit, e”p23 o< @,
is well satisfied at low @. This result indicates that the mode-decomposition was
well achieved and g, and g, were determined with little ambiguities. From these g;
and g, together with the total relaxation intensity A¢ determined by integration of &”
curves with respect to In @, we evaluated F; and F, through eq VI-13. As
explained earlier, the requirement of smooth and continuous n* dependence of F;
and F, was successfully used in this evaluation. F, and F, monotonously increase
with n* for 0 £ n* < N/2, as shown later in Figure VI-6.

It is desired to evaluate Fp also for higher modes (p 2 3) from the linear-
least-square-fit for the £” data. We can accurately do this if we know the 1 values

p
forp = 3 and those values are sufficiently separated. The 1 values would be

p
experimentally determined from £” peak frequencies for a special sort of PI chains
with multi-inversion of dipoles, e.g., a PI chain with inversions at n* = N/3 and
2N/3 that would exhibit a peak corresponding to 73. However, such PI chains are
not yet available. Thus, we tentatively estimated 73 = 1.1 x 103 s from the £” data
of the I-I 49-0 chain with a method explained in Appendix C. As did above, we

used the 7y - 75 values and made a linear-least-square-fit for the £” data at low @

with an equation

e"(w; n*) = g,(n*) Dy(@) + g,(n*) Dy(@) + g;(n*) Ds3(@)

+[Z gprp] 0] (VI-17)
p=4

From the resulting g, - g; values, we obtained F; together with the re-evaluated F,

and F,. Although not shown here, a prerequisite of this fit, €"-g,D,-g,D,-g;D5 o<

w , was satisfied at low o within a scatter similar to that seen in Figure VI-5. For
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higher modes with p 2 4, Tp' s were not estimated with acceptably high accuracy and
the mode-decomposition was not made with good resolution. Thus, in this study »
we do not attempt to evaluate Fp for p 2 4.

Figure VI-6 shows the plots of AFp(n*) = Fp(n*) - Fp(N/2) (p=1,2,3)

against n*/N. For convenience of later comparison, we have shown AF_, not Fp

P’
themselves. The unfilled and filled symbols indicate AFp evaluated from the first
and second least-square-fitting procedures using eqs VI-16 and VI-17, respectively.
We may anticipate some ambiguity for the second procedure that involved the
estimated 75 value. However, as seen in Figure VI-6, the two procedures gave
almost identical AF, and AF,. This result suggests an acceptably small ambiguity
for the second procedure.

As explained later, some models have sinusoidal eigenfunctions, fp°(n) =
sin(pn/N).2:6:10-12 The integrals of these fp° normalized according to eq VI-9 are
given by

V2 pr prn*

AFp°(n*) = —— [ cos — - cos
pr 2 N

] (VI-18)

These AFp° are indicated by the dashed curves in Figure VI-6. As seen there, they
are fairly close to the experimental AFp for n* = N/2 but systematically deviate from
AFp as n* approaches 0 or N. The differences between AFp and AFp° seen for n* =
0 and N are larger than the ambiguities in evaluation of AFp. Because the
eigenfunctions fp and fp° and thus their integrals AFp and AFp° are normalized ( eq
VI-9), those differences suggest some differences of the n* dependence of fp and
fp°. For a critical examination, only the eigenfunction f,(n) = [N/\/i][dAFl(n)/dn]
(cf., eq VI-12) was evaluated as an average gradient taken in an interval of A(n/N)
= 0.1 for the solid curve that smoothly connect the AFp data points. The result for

f,(n) is shown in Figure VI-7. This comparison most clearly demonstrates the non-

sinusoidal n dependence of the experimental AF, and f,(n).
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0.6

AF,, AR,°

Figure VI-6. n* dependence of the integrals of low order eigenfunctions for

the PI chains,

N2 N2
AFp(n*) = — ] fp(n) dn (= Fp(n*) -F_(N/2); cf., eq VI-18).
p
. N n* ,

The unfilled and filled symbols indicate the experimental AFp obtained from
the linear-least-square-fits for the £” data with eqs VI-16 and 17, respectively.
The dashed curves indicate AFp°(n*) = [\/—f/pn][cos(pﬂ/Z) - cos(prn*/N)]
predicted from the reptation models. Note that AFp°(n*) and AFp°(n*) are
normalized according to eq VI-9, so that their differences at n* = 0, N suggest
non-sinusoidal n dependence for the eigenfunctions fp(n) = [N/\/.Z-][dAFp(n)/dn]

of actual PI chains.
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Figure VI-7. n dependence for the eigenfunction f;(n) = [N/\/E][dAFl(n)/dn]
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VI-4. Dipole Inverted Chain in Dilute Solution Systems

VI1-4-1. £” Curves in Dilute Solution Systems

Figure VI-8 shows the @ dependence of £” at 40°C for I-I/PB-0.7 blend
containing Swt% PI chains with various locations of the dipole-inversion points.1?
The MW of PB is much lower than I-1 and hence the matrix PB can be regarded as a
solvent for the PI chains. The time-temperature superposition worked very well,
and the £” data were reduced at T, = 40°C. The shift factors ap for the dipole-
inverted PI chains were identical to that for regular PI chains in PB-0.7.

For the correction of ay = 7,/7,, with 7, being 7, for the I-1 24-24/B-0.7
blend chosen as a reference for the shift, we interpolated the 7, data of I-1 from
those of three probe PI chains with M =35.0, 48.8, 59.9%103 in the B-0.7 matrix
as is shown in Figure VI-9 (open circles). The log ay, values are summarized in
Table VIII(b).

By shifting the £” curve for I-1 49-0 (after the correction of 7,) along the w-
axis by a factor Ay; = 3.4 and then comparing with the curve for [-1.24-24, we
found that the shape of the two curves completely the same as was seen for the bulk
system. As described previously, the £” peaks for I-1 49-0 and 24-24 chains
correspond to the first and second modes with the relaxation times 7, and 7, (=
7,/3.4), respectively. Specifically, the 7, and 7, values are evaluated from the peak

frequencies as
7,=8.13x 1035, 7, =2.09x 103 s (VI-19)

According to the Zimm model, the ratio of 7,/7, becomes 3.17. On the other hand,
the Rouse model or the Tube model predict the ratio as 4.0. Our experimental 7,/7,
of 3.4 is close to the value predicted by the Zimm model.

The data of bulk I-I shown in Fig. VI-2 are also plotted in a reduced form,
i.e., €"/Ae vs. wt,, in Figure VI-8 . The difference between the two series of "

curves can be clearly seen: The strength of £” corresponding to the lower order
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Figure VI-8 Reduced frequency (w7,) dependence of the dielectric loss
factors £” reduced by the relaxation strengths at 40°C for I-I (5wt%)/PB-0.7
systems (unfilled symbols). The solid circles represent the data of the bulk

systems and the solid lines indicate the predicted curves from Zimm model.
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Figure VI-9. M dependence of 7, of dilute (Swt%) PI in PB-0.7 at 40°C.
The open circles represent the data of standard PI (M _=35.0, 48.8, 59.9%x103 )

and the solid circles, the interpolated data for dipole inverted chains.
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mode for the I-I/PB-0.7 system is larger than that for the bulk system. This
behavior is similar to that observed in Figs.V-15 and V-33. In Figure VI-8, the
theoretical curves for the Zimm model are also shown by the solid lines. Their
agreement with experiment is good. In the previous chapter we mentioned that for
regular type-A chains the difference between the €” curves predicted by the Zimm
and Rouse models was hardly distinguishable. But for dipole inverted chains we
can see the difference clearly. Figure VI-10 shows comparison of the £” curve of I-
I 50-6 in PB-0.7 with the Zimm and Rouse models. We can see that the Zimm
model agrees with experimental €” better than does the Rouse model.

VI-4-2. Eigenfunction in Dilute Solution Systems

Figure VI-11 shows the n*/N dependence of experimental AFp(n*) for I-1/PB-
0.7 system. The shape and the absolute value agree very well to the cosine
functions represented by eq VI-18. This result is different from that for the bulk
system shown in Figure VI-6.
* According to the Zimm model the eigenfunction fp(n) is approximately given
by sin(prn/N). Thus the integrated form Fp(n) becomes cos(pnn/N). This
prediction is substantiated by our result for AFp(n) in dilute solution. We have also

found in Chapter V that the Zimm model is applicable to the PI/PB-0.7 system.

VI-5. Discussion
The non-sinusoidal eigenfunction is one of the key factors to explain the
deviation of the shape of the £” curves from the bead-spring or tube models seen in
Chapter V since these models predict the sinusoidal eigenfunction which is based on
the following equation.
1 1 d?

— fp(n) == [N/m]2—— f,(n) (VI-20)

2
Tp 7,° dn

where 1'10 is the first mode relaxation time in the Rouse and tube models. In the
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Figure VI-10. Comparison between the Rouse and Zimm models for the
shape of €” curve of I-1 50-6 in PB-0.7.
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Figure VI-11. . »n* dependence of the integrals of low order eigenfunctions
for the PI chains in PB-0.7. The solid lines indicate the cos(pnn/N) (p=1 to 3)

and the symbols have the same meaning as in Fig. VI-6.
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experimentally determined fp(n) for bulk PI systems we observed the deviation from

the sinusoidal function. We represent them by the Fourier expansion formula as

fp(n) = Zq a, . sin(qrn/N) (VI-21)

It is noted that a, ,must satisfy the normalization condition of eq VI-9. From eqs

VI-9 and VI-21, we obtain
X oa =1 (VI-22)

If the eigenfunction represented by eq VI-21 is inserted in eqs VI-10 and VI-11 with
n* = N, then the €” curve become broad, because the relaxation strength for each p
mode is converted to the different ¢ modes each other with satisfying eq VI-22.
Thus the deviation of fp from a sinusoidal function is consistent with the
broadening of £” curves.

The deviation of fp(n) in bulk system from the sinusoidal function indicates
the limit of the applicability of the eq VI-20. Thus we modify this equation as
follows.

The Rouse and tube models assume the chain ends as the boundary where a
memory instantly vanishes to predict the sinusoidal fp° (cf., eq VI-20).
Qualitatively, fp° is distorted toward the experimental fp (see Fig.VI-7) when the
extra mechanism is incorporated in the model and its effect is represented by a
relaxation source U(n) added in eq VI-20: U(n) should be large for n = 0 and N to
have large effects at chain ends. The eigenfunction equation is formally identical to
the Schrédinger equation with a potential term U(n),

1 1 d?

— f,(n) =- [N/7]2—— f,(n) + U(n) fy(n) (VI-23)

2
7 7,° dn
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and [fp(n)]2 is analogous to the probability density. Thus, fp and fp° (= fp for U =
0) normalized by eq VI-9 would satisfy a relation, pr(n) | < |fp°(n) | for n* = 0,
N, as noted in Figures VI-6 and VI-7 for fp(n) = [N/\/-f][dAFp(n)/dn] (in particular
for those with p = 1 and 2). (A similar argument may be made also for U(n) that
works as a differential operator.)

The next problem is to find the origin of U(n). In the previous chapter we
mentioned that the viscoelastic effect of the media will be the important point to
consider the chain dynamics in a dense system. Based on this idea we try to modify

the bead-spring model.1® The equational motion of Rouse is given by

oR(nt)_ 9’R(np)
or 9 2n B (VI-24)

where { is the friction coefficient, k the spring constant, R (n,¢) the position of the
n-th bead at time ¢, and fg(n,t) the random force acting on the n-th bead at time ¢.
We introduce in this equation a external viscoelastic force which acts between two
beads through the elasticity of the media. This force must be damped by the
viscosity which originates in the viscoelasticity. In addition we assume that this
force acts in a certain critical spatial range characterized by the number of beads h.

Then it follows that

OR 32R n+hi/ 2 ,t ) , ., ’ ’
¢ ?:K d n2+fB+‘B ,,_h/zdn —‘[057[(})({ ~){R (') =R (n.t )}]dt (VI-25)

Here B represents the spring constant which originates in the elasticity of the media
and ¢ is the memory function. By multiplying the operator {u(m,0)-(Jd/dn)} and
then taking the ensemble average, we can derive the time evolution equation for

C(n,t;m) (cf. eq VI-3):
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NF]

n+hi2
§= 2C+E +ff dn T;T[‘P(t—t')-{c(ri 2 m)=C (n,t' ;m)}]dr

K
$an? & pniz (VI-26)

If we assume ¢ (f)=exp(-t/7) where T represents the relaxation time of media, then

we can derive the eigenfunction equation:

1 1 d2 BIg nyhi2
—_— fp(n) = - [N/7r]2 — fp(n) + ] dn’ [ fp(n')-fp(n)] (VI-27)

o 2 1 n-hi2
™ T, dn rp/r 1

This equation has the same form as eq VI-23 and explains the deviation of the
eigenfunction fp(n) from the sinusoidal function. Thus we can conclude thatin a
dense polymeric system the viscoelasticity of the media causes the relaxation

spectrum to change.
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APPENDIX A. Eigenfunction Expansion of C(n,t; m)
As a quantity that describes fundamental features of dielectric relaxation of

type-A PI chains, a local correlation function is defined by
C(n,t; m) = (1/b2) <u(n,t)*u(m,0)> (A1)

with u(n,t) being a bond vector for the n-th segment at time t and b2 =<u?>. At
short time scales, the relaxation spectrum might be continuous and an eigenfunction
expansion of C(n,t; m) might contain some ambiguities. However, this is not the
case at long time scales where the PI chains actually exhibit a terminal dielectric
relaxation that is decomposed into well-defined modes. These dielectric modes
correspond to eigenmodes of C(n,t; m), justifying the eigenfunction expansion at
long time scales. For those cases, a time evolution of C(n,#; m) should be generally

described by an equation of a factorized form

d
a—— C(n,t; m) = L(n) C(n,t; m) (A2)
t

where L(n) represents an operator with respect to n. (Note in eq Al that u(m,0)
does not change with time, thereby no operation with respect to m is involved in eq
A2.) Details of the global chain motion can be found from a functional form of the
operator L(n), or equivalently, from the form of the eigenfunctions hp(n) p=1,
2,..) associated with L(n). This indicates an importance of the dielectric work on
the dipole-inverted PI chains that determines hp(n).

Using hp(n) and corresponding eigenvalues 1/1p that are determined by

L(n) hp(n) = —(l/Tp) hp(n) (r=12,..,N) (A3)
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we can generally solve eq A2 as

2 N
Cln,t;m)= — X hp(n) Ap(m) exp(-t /‘rp) (t>0) (A4)
p=1

Here, the factor (2/N)Ap(m) represents the amplitude factor for the p-th
eigenfunction at t = 0. At equilibrium, an origin of time (t=0) can be arbitrarily
chosen and an orientation-correlation of the bond vectors should be symmetrical

with respect to time. This argument leads to the relation

<u(n,t)eu(m,0)> = <u(n,0)su(m,-1)> = <u(n,0)*u(m,t)>

for any ¢, n, m (AS)
From eqs Al, A4, and A5, we find
Ap(m) hp(n) = Ap(n) hp(m) for any n, m (A6)
and thus
Ap(n) =0y hp(n) (A7)
Here, o, is a numerical constant. Using normalized eigenfunctions fp(n) = ap1/2

hp(n) in eqs A4 and A7, we finally find an expression for C(n,t; m) on the basis of

the eigenfunction expansion,
2 N

Cn,t; m)=— X fp(n) fp(m) exp(-t /’L'p) (t>0) (A8).
N p=1
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APPENDIX B. Determination of g, and g,

At o below a certain characteristic w_, the contribution to £” from all higher
p-th modes with p 2 3, €" 53 is practically identical to its low-@ asymptote, G3 @
= [Z‘.p23 gpz'p] o, and then eq VI-16 holds. Using this equafion, we made a
standard linear-least-square-fit: Minimizing a sum X[¢” - g,D, - g,D, - G3co]2/£"2
taken in a range of w < @_, we obtained a set of linear equations that determined g,
g9, and Gj.

For the best fit to be made, the upper limit of the fitting range, w_, should be

e
small enough so that eq VI-16 is valid. At the same time, @_ should be large
enough so that we can involve enough data points in the fit. Thus, we varied @,
around its first estimate 1/7, (=478 s'1; ¢f., eq VI-14) and examined a quality of the
fit. For respective PI samples, we found a range of the acceptable @w_ values: In
that range, the mean square deviation of the fit, §, was minimized and the g1, 89
and G5 values were found to be insensitive to the choice of .. The smallest value
of the acceptable @w_ was used to finally determine the g;, g,, and G5 values. That
@, value was about 0.5/7, for the I-1 49-0 chain (n* = 0), about 2/7, for the I-I 24-
24 chain (n* = N/2), and between 0.5/7, and 1/7, for the other PI chains. With the
g, and g, values determined for these @, a prerequisite of the fit, €” - g,D; - g,D,
o @, was well satisfied at low @, for some cases even at @ somewhat higher than
w,_ (cf., Figure VI-5). This result suggests that the best fit was made.

Note here that the optimum value of @ _ should be determined in relation to
the relaxation time 75 (=1.1 x 10-3 s for the best estimate; cf., Appendix C) and
intensity g3 of the third eigenmode. For large g3, £”,,5 at ® < @, is dominated by
the contribution from the third mode g;D;(w). Then, @ _ should be sufficiently
smaller than 1/75 for a good fit with small 6 to be made. This was the case for the
I-1 49-0 chains: For @ = 0.5/7, used in the fit, D;(@) at @ < w_ agrees with its
low-® asymptote @7, within a few percent. On the other hand, for smaller g4, the
third mode contribution becomes less significant and @_ can become larger, as were
the cases for the other PI's. In particular, for the I-I 24-24 chains having g3 =0,

we had o _ = 2/7, and still found the prerequisite, €” - g,D, « @, to be well

satisfied up to w = 1.3w_ (cf., Figure VI-5).
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APPENDIX C. Estimation of 15 for the Third Eigenmode.

For the I-1 49-0 chain without dipole-inversion, only odd eigenmodes
contribute to £”. Thus, at low @ where the contribution from all higher p-th modes
with p 2 5 is practically identical to its low-w asymptote, G5 @ = [szs gp7p ] o,

we may re-write eq VI-10 as
€"= g, Di(w) + g3 D3(w) + G5 @ (C1)

For convenience for the estimation of 75, this equation is further modified as

§"=w3[e”- gD(w) -Gy 01! = -X - 0?Y (C2)
with
w7
D(0) = ———— (C3)
1+ w?7,?
and
G3=p§3gp1p’x=1/(g3733)vY=1/(g373) (C4)

Since 7, was experimentally determined (eq VI-14) and g; and G5 were evaluated
from the least-square-fit with eq VI-16 (cf., Figure VI-5), we made a standard
linear-least-square-fit for the quantities 8" calculated from the £” data: Minimizing
asum X [6" + X + 02Y]%/86"2 taken for the data in a given range of @, we obtained
a set of linear equations for X and Y that determined Ty = (Y/X)1/2.

Equation C1 should be valid in a @w-range with its upper limit @_* being
located in a vicinity of 1/75. Thus, for the fit, we first need to know an appropriate
value for 75. For this purpose, we used 73° = 7,/9 (predicted from the reptation
model) as a first estimate. As did in Appendix B, we varied .’ around 1/75°and
examined the mean-square deviation of the fit, and obtained 75 = 1.1 x 10-3 5 as the

best estimate.
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VII. Summary and Conclusions

In this thesis we have studied two main subjects: One is the determination of
the mean square end-to-end distance <r2> from the dielectric measurement on type-
A chains, and the other is the chain dynamics associated with the fluctuation of the
end-to-end vector of type-A chains in various surroundings. The principal results

and conclusions are summarized as follows.

Dipole Moment and End-to-End Distance (Chapters II and IV)

The applicability of the dielectric method to determine <r?> of a type-A
polymer chain was examined both theoretically and experimentally. The basic idea
of this possibility is that type-A chains have a dipole moment P , proportional to the
end-to-end vector r: P, =ur where u is a constant. However, this equation
contains two unsettled important problems: One is the relationship between u and
the chemical structure and the other is the dependence of y on the surroundings
such as solvent nature and polymer concentration.

First, we made theoretical considerations for the determination of g in

Chapter II, assuming that u is given for any type-A chains by

P =<P-r/r?>=<(Zm)r/ri> (VII-1)

where P is the total dipole moment of a chain and m, the monomer dipole moment.
The calculation of ¢ was made for two polymers, i.e., cis-polyisoprene (PI) and
poly(e-caprolactone) (PCL). We determined the monomer dipole moment m, by the
ab-initio MO calculation and then y by using Flory's rotational isomeric state (RIS)
model on the basis of eq VII-1. On the other hand, experimental determination of u
was made for dilute solutions of PI and PCL. We evaluated the value of u? as

<P,2>/(6<52>), where <P 2> (=<(ur)2>) was determined from the dielectric
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relaxation strength Ae and <S2> from light scattering measurements or from the
intrinsic viscosity [77] assuming the Flory-Fox equation: []=®<r?>3/2/M  with
@=2.5x1023. The experimentally determined u agreed fairly well with the
calculated one. Thus we concluded eq VII-1 to be valid.

As to the problem on the dependence of 4 on the surroundings (through
solvent-polymer interactions), we expected that the detailed chemical structure of
the type-A chain should be reflected. Thus we classified type-A dipoles into three
categories as shown in Figure II-1: (1)type-Al, intrinsic type-A polymer composed
of only one kind of polar virtual bond, (2)type-A2, alternating polar-nonpolar bond
type composed of one kind of polar bond and (a set of) non-polar bond(s)
alternately, and (3)type-A3, mixed polar-and-nonpolar bond type composed of a few
different polar and non-polar bonds. For type-Al chains g can be determined
uniquely. However, for A2 and A3 polymers u is defined as an average over all
possible conformations of the bond moments. Thus there was a possibility that u
depends on the solvent quality. To investigate this problem, we compared the
dielectric relaxation strengths Ag (o< <PA2>) for PI in dilute dioxane (Diox) (0
solvent), heptane (marginal solvent), and cyclohexane (good solvent) solutions. We
also compared these Ae with <S2> data obtained for the same systems. First we
found that the proportionality between Ae and <$%> for each system holds well, and
thus concluded that 4 does not appreciably change in these solvents. The second
finding was that the ratio of of the expansion factor for Ag to that for <§2>,
aez/aSZ, increases with increasing solvent quality. This value corresponds to
(a2 fag?)x(u/ug)? where pg is g in the 6 state. From the change of & 2/ag? found
in different solvent (heptane and cyclohexane), (;t/,ue)2 for PI may be estimated to
change as much as ca. 11% by the change in the solvent quality.

For semidilute solutions of PI and PCL, we investigated the concentration C
dependence of Ag/C in order to check the scaling theory and also to test the C

dependence of y. The results indicated that the C dependence of <PA2> agrees well
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with the prediction of the scaling theory indicating that 4 does not depend on C in
the semidilute regime.

We also made dielectric measurement on a ternary system composed of a trace
amount of PI and semidilute polybutadiene(PB)/heptane solutions which were
diclectrically inert matrices. The dependence of <PA2> (e <r?>) on PB
concentration Cy and on PI and PB molecular weights M} and My was
systematically investigated by fixing the PI concentration low enough but varying
Cy over a wide range from dilute to semidilute regimes. The value of <r2> for the
PI chains divided by that of <r2>0 in dilute PI/heptane solution (Cy = 0) are plotted
against Cg[n]y where [n]y is the intrinsic viscosity of PB in heptane. In case of
M; 2 My, all the plotted points fell on a single curve. On the other hand, <r’> in
systems of M; < My conformed to a universal curve when <r2>/MI (< Ag/Cy) values

were plotted against C. At least, the qualitative features of these results can be

favorably explained by the scaling theories developed by Joanny er al. and Nose.

Dynamic Properties (Chapter V)

We studied dynamic properties of three different type-A polymers, PI, PCL,
and poly(d-varerolactone) (PVL) in several different surroundings.

In dilute solutions, the normal mode relaxation times 7 of PI in cyclohexane
and heptane and those of PCL and PVL in benzene were expressed as a universal
function of the Rouse-Zimm parameter, 1 [n]M_/RT, where 7, is the solvent
viscosity. In addition, the shapes of £€” curves which represent the relaxation mode
distribution conformed to the theoretical prediction by Zimm. The relaxation time
7, of the second mode was determined from the inverse of the peak angular
frequency @, ,, for symmetrically dipole-inverted PI chain in dilute cyclohexane
solutions. The value of 7,/7, was close to that predicted by the Zimm model.

In semidilute solutions of PI/heptane and PCL/cyclohexane, 7/7, was found

to be well represented by the parameter C[7] in harmony with the scaling
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prediction. The mode distribution (the £” curve) became broader with increasing C
in the regime of C*<C and tended to converge to that of the bulk systems. The
shape of the £€” curve in the crossover C range is determined by C[n] irrespective of
M. We compared the dielectric relaxation spectra with viscoelastic spectra of
polystyrene solutions with C[n] = 10 reported by Ferry et al. who used the Rouse
model to explain the shape of the complex moduli G*. We found that the change in
the shape of £€” curve with C does not correspond to that of G” curve. From this
result we doubt the applicability of the Rouse model to the systems of C > C*.

For the PI/PB/heptane ternary systems described above, the dynamic behavior
was also investigated. The data for 7/7, of probe PI were expressed by a universal
function of two parameters Cz[7]y and Cx[nl;. From the slope of log(7/7,) vs.
log(Cglnly) at constant Cg[n]; or that of log(7/7,) vs.log(Cyz[n]g) at constant
Cglnlg, we classified the dynamical behavior of the PI chains into three regimes
according to the dynamic scaling theory. The first is the Zimm regime in which the
motion of PI probes can be explained by the non-draining Zimm model. The second
regime is the reptation regime reflecting entanglement effects between PI and PB
chains, and the third is the transition regime between these two regimes. The case
of Cxlnl; >> Cyxlnly belongs to the Zimm regime, and that of Cgln]; << Cyx[nlg to
the reptation regime. We found that the shape of the €” curve is narrow in the first
regime but begins to broaden in the transition region.

In binary blends composed of dilute PI and undiluted PB matrix, we found
also a broadening of the £” curves with increasing M. Even when the matrix PB
chains were short enough so that they were not entangled, the broadening of £” with
My was observed. This indicated that the broadening phenomenon is not a direct
consequence of the entanglement effect. We propose that the elastic force of the

media plays an important role in the broadening of the £€” spectrum.
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Investigation of the Polymer Chain Dynamics by Using Dipole Inverted
Polyisoprene (Chapter VI)

In order to investigate the features of the chain dynamics in a greater detail,
we examined dielectric normal mode relaxation of a series of asymmetrically dipole-
inverted PI chains in bulk and in dilute solution. Those PI chains were specially
designed so that the overall molecular weights are the same but the dipole-inversion
point appears at a certain point from the chain end (no inversion) to the center of the
chain. A polybutadiene oligomer with M = 700 was used as a solvent for the study
of dilute solution. From the series of the £” data we evaluated the low-order
eigenfunctions fp(n) (p up to 3) for the local correlation function C(n,t;m) =
(1/b2)<u(n,t)~u(m,o)>, where u(n,t) is the bond vector for the n-th segment at time
¢t and b%= <u?>. The experimental fp(n) (p = 1-3) in dilute solutions was found to
agree well with the sinusoidal function predicted by the Zimm model. On the other
hand, fp(n)' s in bulk systems exhibit a non-sinusoidal n dependence, which in turn
should be related to the broad £” curves found in these bulk systems. We concluded
that the Rouse model (and the tube model as well) should be modified by the
equation of motion which can predict the non-sinusoidal eigenfunctions of the type

found in this study.
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