

Title	On the equivariant homotopy of Stiefel manifolds
Author(s)	Komiya, Katsuhiro
Citation	Osaka Journal of Mathematics. 1980, 17(3), p. 589–601
Version Type	VoR
URL	https://doi.org/10.18910/9986
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Komiya, K. Osaka J. Math. 17 (1980), 589-601

ON THE EQUIVARIANT HOMOTOPY OF STIEFEL MANIFOLDS

KATSUHIRO KOMIYA

(Received May 18, 1979)

1. Introduction and results

Throughout this paper G denotes a compact Lie group, and Λ denotes one of the real numbers \mathbf{R} , the complex numbers \mathbf{C} and the quaternions \mathbf{Q} . Let E be a representation of G over Λ . All representations considered in this paper are orthogonal if $\Lambda = \mathbf{R}$, unitary if $\Lambda = \mathbf{C}$, and symplectic if $\Lambda = \mathbf{Q}$. For a positive integer $m \leq \dim_{\Lambda} E$, the *Stiefel manifold* $V_m^{\Lambda}(E)$ consists of all orthonormal *m*-frames in E, i.e.,

> $V_m^{\Lambda}(E) = \{(v_1, \dots, v_m) | v_i \in E, ||v_i|| = 1 \text{ for } i = 1, \dots, m,$ and $v_i \perp v_i \text{ if } i \neq j\}.$

If m=1, then $V_m^{\Lambda}(E)$ is the unit sphere S(E) in E. For any $g \in G$ and any orthonormal *m*-frame (v_1, \dots, v_m) in E, (gv_1, \dots, gv_m) is also an orthonormal *m*-frame in E. This induces a smooth G-action on $V_m^{\Lambda}(E)$.

Let E' be another representation of G over Λ . We are interested in the set of G-homotopy classes of G-maps from S(E) to $V_m^{\Lambda}(E')$, $[S(E), V_m^{\Lambda}(E')]_G$. If m=1, this set is the set of G-homotopy classes of G-maps from sphere to sphere, $[S(E), S(E')]_G$, which was studied in Hauschild [1], Rubinsztein [3] and others. (I am grateful to the referee who informed me that there was a gap in the proof of Rubinsztein's main theorem [3; Theorem 7.2]. This information leads to an improvement of the presentation of this paper.)

For any positive integer *n*, let

$$\Lambda^n = \Lambda \oplus \cdots \oplus \Lambda \qquad (n \text{ summands})$$

be a representation with trivial G-action and with the standard inner product. We define a map

$$j: S(E') \rightarrow V_m^{\Lambda}(E' \oplus \Lambda^{m-1})$$

by $j(v) = (v, e_1, \dots, e_{m-1})$ for $v \in S(E')$ and the canonical orthonormal (m-1)-frame (e_1, \dots, e_{m-1}) in Λ^{m-1} . Then j is a G-embedding, and induces a transformation

$$j_*: [S(E), S(E')]_G \rightarrow [S(E), V_m^{\Lambda}(E' \oplus \Lambda^{m-1})]_G$$

between G-homotopy sets. We are also interested in this transformation j_* .

In the non-equivariant case we already know some facts about j_* . Clearly $S^{dn-1}=S(\Lambda^n)$ where d=1 if $\Lambda=\mathbf{R}$, d=2 if $\Lambda=\mathbf{C}$, and d=4 if $\Lambda=\mathbf{Q}$. The map

$$j: S^{dn-1} = S(\Lambda^n) \to V^{\Lambda}_m(\Lambda^n \oplus \Lambda^{m-1}) = V^{\Lambda}_m(\Lambda^{m+n-1})$$

defined above induces a group homomorphism

$$j_*: \pi_i(S^{dn-1}) \to \pi_i(V_m^{\Lambda}(\Lambda^{m+n-1}))$$

between the *i*-th homotopy groups for an integer $i \ge 0$. We collect known results about the homomorphism j_* in the following:

Proposition 1 (See for example [2; Chapter 7]). (a) j_* is an isomorphism in each case of the followings:

(i)
$$m=1$$
,

(ii)
$$0 \le i \le dn - 2$$
,

(iii)
$$\Lambda = R$$
, and $i = n - 1$ is even,

(iv) $\Lambda = C$ or Q, and i = dn - 1.

Therefore

$$\pi_i(V_m^{\Lambda}(\Lambda^{m+n-1})) = \begin{cases} 0 & csae \text{ (ii)} \\ \mathbf{Z} & case \text{ (iii) or (iv)} \end{cases}$$

(b) If $\Lambda = \mathbf{R}$, $m \ge 2$, and i = n-1 is odd, then j_* is an epimorphism and $\pi_i(V_m^{\Lambda}(\Lambda^{m+n-1})) = \mathbf{Z}/2\mathbf{Z}$.

To state our result in the equivariant case, let us define some notations. For any closed subgroup H of G, N(H) denotes the normalizer of H in G, and (H) denotes the conjugacy class of H in G. Let X be a G-space. For any $x \in X$, G_x denotes the isotropy subgroup at x. The conjugacy class of an isotropy subgroup is called an orbit type. We put

$$X^{H} = \{x \in X | H \subset G_{x}\}, \\ X_{H} = \{x \in X | H = G_{x}\}, \text{ and } \\ X_{(H)} = \{x \in X | (H) = (G_{x})\}.$$

For a representation E of G, $\mathfrak{M}(E)$ denotes the set of orbit types appearing on S(E). Choose a representative of each element of $\mathfrak{M}(E)$, and denote by $\mathfrak{M}_r(E)$ the set of those representatives. For any $H \in \mathfrak{M}_r(E)$ there is a transformation

$$r_H: [S(E), S(E')]_G \rightarrow [S(E^H), S(E'^H)]$$

restricting to the fixed point set by H, where [,] denotes the non-equivariant

homotopy set.

Our result is

Theorem 2. Let E, F be representations of a compact Lie group G over Λ . Let

$$j_*: [S(E), S(E \oplus F)]_G \rightarrow [S(E), V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})]_G$$

be the transformation induced from the G-map

$$j: S(E \oplus F) \to V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1}).$$

Then

(a) $j_* i_*$ surjective,

(b) j_* is bijective in particular in each case of the followings (i), (ii):

(i) $\Lambda = \mathbf{R}$, $\dim_{\mathbf{R}} E^{H}$ is odd for any $H \in \mathfrak{N}(E, F) = \{H \in \mathfrak{M}_{r}(E) | \dim_{\mathbf{R}} F^{H} = 0\}$, and

$$r = \prod_{H \in \mathfrak{N}(E,F)} r_H \colon [S(E), S(E \oplus F)]_G \to \prod_{H \in \mathfrak{N}(E,F)} [S(E^H), S(E^H \oplus F^H)]$$

is injective,

(ii) $\Lambda = C$ or Q, and r is injective,

(c) if dim_R $E^{G} \ge 2$ then $[S(E), V_{m}^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})]_{G}$ has a group structure and j_{*} is a group homomorphism.

NOTE. The injectivity of r is studied by several authors, e.g., Hauschild [1; Satz 4.5].

In the subsequent sections we prove Theorem 2. Section 2 is devoted to preliminary lemmas. Section 3 is devoted to proving the surjectivity of j_* , and section 4 is devoted to proving the injectivity of j_* . In section 5 we give a group structure to $[S(E), V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})]_G$ so that j_* is a group homomorphism.

2. Preliminary lemmas

Let E, F be representations of a compact Lie group G over A, and let M be a compact, smooth, free G-manifold with dim $M \leq \dim S(E \oplus F)$. Consider the fibre bundles

$$B = M \times_G V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1}) \to M/G$$

with fibre $V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$, and

$$B' = M \times_G S(E \oplus F) \to M/G$$

with fibre $S(E \oplus F)$. The *G*-map

$$Id \times i: M \times S(E \oplus F) \to M \times V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

induces a bundle embedding $\tilde{j}: B' \to B$. There is a one-to-one correspondence between G-maps from M to $V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$ and cross sections of B, and there is also a one-to-one correspondence between their homotopies. This shows that the following two lemmas are equivalent:

Lemma 3. Let

$$f: M \to V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

be a G-map, and let

 $P: \partial M \times [0, 1] \to V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$

be a G-homotopy with $P_0 = f \mid \partial M$ and $P_1(\partial M) \subset i(S(E \oplus F))$. Then P extends to a G-homotopy

$$Q: M \times [0, 1] \to V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

with $Q_0 = f$ and $Q_1(M) \subset j(S(E \oplus F))$.

Lemma 4. Let N=M/G. Let $s: N \rightarrow B$ be a cross section of B, and let P: $\partial N \times [0, 1] \rightarrow B | \partial N$ be a homotopy of cross section of $B | \partial N$ with $P_0 = s | \partial N$ and $P_1(\partial N) \subset \tilde{j}(B')$. Then P extends to a homotopy of cross section of B, $Q: N \times [0, 1] \rightarrow B$, with $Q_0 = s$ and $Q_1(N) \subset \tilde{j}(B')$.

We give a proof of Lemma 4 making use of the obstruction theory. Refer to [4; Part III] for the obstruction theory.

Proof of Lemma 4. Since N is a smooth manifold, we obtain a triangulation of N. Let $n=\dim S(E\oplus F)$. Then $\dim N \le n$, and $S(E\oplus F)$, which is the fibre of B', is (n-1)-connected. So the cross section $\tilde{j}^{-1}P_1$ of $B' | \partial N$ extends to a cross section $s_1; N \to B'$ of B'. We see from Proposition 1 that $V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$ is also (n-1)-connected. Let N^{n-1} denote the (n-1)-skeleton of N, which contains ∂N . Then P extends to a homotopy of cross section,

$$R\colon N^{n-1}\times[0,1]\to B|N^{n-1},$$

with $R_0 = s | N^{n-1}$ and $R_1 = \tilde{j} s_1 | N^{n-1}$. So, if dim N < n, the lemma is proved.

Now let dim N=n. Let $B(\pi_n)$ and $B'(\pi_n)$ be the bundles of coefficients associated with the bundles B and B' by the *n*-th homotopy group, respectively. Also let $C^n(N; B(\pi_n))$ and $C^n(N; B'(\pi_n))$ be the groups of *n*-cochains of Nwith coefficients in $B(\pi_n)$ and $B'(\pi_n)$, respectively. The bundle embedding $\tilde{j}: B' \rightarrow B$ induces a group homomorphism

$$\tilde{j}_*: C^n(N; B'(\pi_n)) \to C^n(N; B(\pi_n))$$

We see from Proposition 1 that \tilde{j}_* is an epimorphism. Let

$$d = d(s, R, js_1) \in C^n(N; B(\pi_n))$$

be the deformation *n*-cochain. (See [4; p 172].) There is $d' \in C^n(N; B'(\pi_n))$ with $\tilde{j}_*(d') = d$. By [4; 33.9] there is a cross section s_2 of B' such that s_2 agrees with s_1 on N^{n-1} and $d(s_1, s_2) = -d'$, where $d(s_1, s_2)$ is the difference *n*-cochain. (Also see [4; p 172].) We see

$$d(\tilde{j}s_1, \tilde{j}s_2) = \tilde{j}_*(d(s_1, s_2)) = -d$$
.

We define a homotopy of cross section of $B|N^{n-1}$,

$$S: N^{n-1} \times [0, 1] \to B | N^{n-1},$$

by

$$S(x, t) = \begin{cases} R(x, 2t) & \text{if } 0 \le t \le 1/2 \\ \tilde{j}s_2(x) & \text{if } 1/2 \le t \le 1 \end{cases}$$

By [4; 33.7],

$$d(s, S, \tilde{j}s_2) = d(s, R, \tilde{j}s_1) + d(\tilde{j}s_1, \tilde{j}s_2) = d - d = 0.$$

By this and [4; 33.8], S extends to a homotopy of cross section of B, $T: N \times [0, 1] \rightarrow B$, with $T_0 = s$ and $T_1 = \tilde{j}s_2$. Let $\partial N \times [0, 1] \subset N$ be a collar of ∂N in N. Then we define a homotopy $Q: N \times [0, 1] \rightarrow B$ as, for $x \in N$ and $t \in [0, 1]$,

$$\begin{array}{l} Q(x, t) = T(x, t) & \text{if } x \in N - \partial N \times [0, 1), \\ Q(x, t) = T(x, t/(2-r)) & \text{if } x = (y, r) \in \partial N \times [0, 1] & \text{and } 2t + r \le 2, \\ Q(x, t) = T(x, (t+r-1)/r) & \text{if } x = (y, r) \in \partial N \times [0, 1], & 2t + r \ge 2 \\ & \text{and } r \neq 0. \end{array}$$

Q is well-defined, and is an extension of P with the desired property. Q.E.D.

3. The surjectivity of j_*

Let E, F be representations of a compact Lie group G over Λ , and let

$$j_*: [S(E), S(E \oplus F)]_G \rightarrow [S(E), V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})]_G$$

be the transformation induced from the G-map

$$j:S(E\oplus F) \to V_m^{\Lambda}(E\oplus F\oplus \Lambda^{m-1})$$
.

The purpose of this section is to prove the surjectivity of j_* . Since j is an embedding, it suffices to prove the following fact:

Lemma 5. Let

$$f: S(E) \to V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

be a G-map, and let N be a compact smooth G-submanifold of S(E) with dim $N = \dim S(E)$. Let

 $T: N \times [0, 1] \to V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$

be a G-homotopy with $T_0=f|N$ and $T_1(N) \subset j(S(E \oplus F))$. Then T extends to a G-homotopy

$$R: S(E) \times [0, 1] \to V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

with $R_0 = f$ and $R_1(S(E)) \subset i(S(E \oplus F))$.

Proof. $\mathfrak{M}(E)$ is a finite set. Let us number its elements

$$\mathfrak{M}(E) = \{ (H_1), (H_2), \cdots, (H_a) \}$$

in such a way that if i < k then $(H_i) \subset (H_k)$. Consider the following Assertion:

ASSERTION. There are compact smooth G-submanifolds M_0, M_1, \dots, M_a of S(E) such that

dim
$$M_i$$
 = dim $S(E)$ for $i = 0, 1, \dots, a, M_0 \supset N$, and
Int $M_i \supset M_{i-1} \cup S(E)_{(H_i)}$ for $i = 1, 2, \dots, a$.

Furthermore there are G-homotopies $R^{(0)}, R^{(1)}, \dots, R^{(a)}$ such that

$$\begin{split} R^{(i)} &: M_i \times [0, 1] \to V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1}) \quad \text{for} \quad i = 0, 1, \dots, a \\ R_0^{(i)} &= f \mid M_i \quad \text{for} \quad i = 0, 1, \dots, a , \\ R_1^{(i)}(M_i) \subset j(S(E \oplus F)) \quad \text{for} \quad i = 0, 1, \dots, a , \\ R^{(0)} \mid N \times [0, 1] = T , \quad \text{and} \\ R^{(i)} \mid M_{i-1} \times [0, 1] = R^{(i-1)} \quad \text{for} \quad i = 1, 2, \dots, a . \end{split}$$

Lemma 5 follows from the Assertion since $M_a = S(E)$. In the following we prove the Assertion.

N and T satisfy the conditions for M_0 and $R^{(0)}$, respectively. Suppose that M_0, \dots, M_{i-1} , and $R^{(0)}, \dots, R^{(i-1)}$ are constructed. Put

$$M = (S(E) - \operatorname{Int} M_{i-1})^{H_i} = S(E^{H_i}) - \operatorname{Int} M_{i-1}^{H_i}$$

Then M is a compact smooth manifold with boundary $\partial M = M \cap \partial M_{i-1}$. Moreover M is $N(H_i)$ -invariant, and all isotropy subgroups on M are H_i . So M becomes a free $N(H_i)/H_i$ -manifold. Regard E^{H_i} and F^{H_i} as representations of $N(H_i)/H_i$. By Lemma 3 there is an $N(H_i)/H_i$ -homotopy

Equivariant Homotopy of Stiefel Manifolds

 $Q: M \times [0, 1] \to V_m^{\Lambda}(E^{H_i} \oplus F^{H_i} \oplus \Lambda^{m-1})$

such that

$$egin{aligned} Q_0 &= f \mid M \ , \ Q_1(M) \subset i(S(E^{H_i} \oplus F^{H_i})) \ , & ext{and} \ Q \mid \partial M imes [0, 1] &= R^{(i-1)} \mid \partial M imes [0, 1] \ . \end{aligned}$$

Since $G(M) = G \times_{N(H_i)} M$, we may extend Q to a G-homotopy

$$Q': G(M) \times [0, 1] \to G(V_m^{\Lambda}(E^{H_i} \oplus F^{H_i} \oplus \Lambda^{m-1})) \subset V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

such that

$$egin{aligned} &Q_0'=f\,|\,G(M)\,,\ &Q_1'(G(M))\!\subset\!i(S(E\!\oplus\!F))\,,\ & ext{ and }\ &Q_1'\,|\,\partial G(M)\! imes\![0,\,1]=R^{(i-1)}\,|\,\partial G(M)\! imes\![0,\,1]\,. \end{aligned}$$

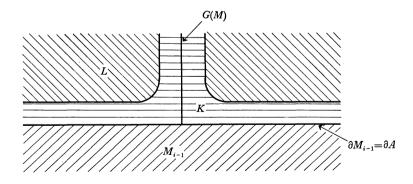
Applying [3; Lemma 1.1] to the G-manifold $A=S(E)-\text{Int }M_{i-1}$ and the submanifold G(M) of A, we obtain compact G-submanifolds K, L of A such that

(i)
$$K \cup L = A$$
,
(ii) $\partial L = L \cap K$,
 $\partial K = \partial L \cup \partial A = \partial L \cup \partial M_{i-1}$,
 $\partial M_{i-1} \cap \partial L = \phi$,

(iii)
$$\partial M_{i-1} \cup G(M) \subset K$$
, and

(iv) K is a mapping cylinder of some G-map

$$\psi\colon \partial L \to \partial M_{i-1} \cup G(M) \; .$$



Put $M_i = M_{i-1} \cup K$ in S(E). Then M_i is a compact smooth G-submanifold of S(E) with dim $M_i = \dim S(E)$, and with $\operatorname{Int} M_i \supset M_{i-1} \cup S(E)_{(H_i)}$. According to (iv), let us denote a point of K by the form [y, s], where $y \in \partial L$ and $s \in [0, 1]$. Under this form [y, 1] = y and $[y, 0] = \psi(y)$. We define a G-homotopy

 $R^{(i)}: M_i \times [0, 1] \rightarrow V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$

K. Komiya

as the following: For $(x, t) \in M_i \times [0, 1]$,

$$\begin{aligned} R^{(i)}(x,t) &= R^{(i-1)}(x,t) & \text{if } x \in M_{i-1}, \\ R^{(i)}(x,t) &= f([y,s-2t]) & \text{if } x = [y,s] \in K \text{ and } 2t \le s, \\ R^{(i)}(x,t) &= R^{(i-1)}(\psi(y), (2t-s)/(2-s)) & \text{if } x = [y,s] \in K, \\ \psi(y) &\in \partial M_{i-1} \text{ and } s \le 2t, \\ R^{(i)}(x,t) &= Q'(\psi(y), (2t-s)/(2-s)) & \text{if } x = [y,s] \in K, \\ \psi(y) &\in G(M) \text{ and } s \le 2t. \end{aligned}$$

 M_i and $R^{(i)}$ constructed above satisfy the conditions in the Assertion. Thus this completes the proof. Q.E.D.

Now let X, Y be G-spaces, and let $x_0 \in X^c$, $y_0 \in Y^c$. Denote by

$$[(X, x_0), (Y, y_0)]_G$$

the set of G-homotopy classes rel. x_0 of G-maps $f: X \rightarrow Y$ with $f(x_0) = y_0$. The following Proposition is required in section 5.

Proposition 6. Let E, F be representations of G, and let $x_0 \in S(E^G)$, $y_0 \in S(E^G \oplus F^G)$. Then

 $j_*: [(S(E), x_0), (S(E \oplus F), y_0)]_G \to [(S(E), x_0), (V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1}), j(y_0))]_G$

is surjective.

Proof. Let

$$f: S(E) \to V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

be a G-map with $f(x_0)=j(y_0)$. Let D be a G-invariant, top-dimensional, small disc in S(E) with x_0 as its center. We may deform f to a G-map f' such that $f'(D)=j(y_0)$ and f'=f rel. x_0 . By Lemma 5 there is a G-homotopy

 $R: S(E) \times [0, 1] \rightarrow V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$

such that

$$R_0 = f',$$

 $R_1(S(E)) \subset j(S(E \oplus F)),$ and
 $R(D \times [0, 1]) = j(y_0).$

Then f' is G-homotopic to R_1 rel. x_0 . This proves the Proposition. Q.E.D.

4. The injectivity of j_*

Let E, F be representations of a compact Lie group G over Λ , and let

Equivariant Homotopy of Stiefel Manifolds

$$j_*: [S(E), S(E \oplus F)]_G \rightarrow [S(E), V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})]_G$$

be the transformation induced from the G-map

$$j: S(E \oplus F) \to V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1}).$$

The purpose of this section is to prove the injectivity of j_* under the assumption (i) or (ii) in Theorem 2.

For any closed subgroup H of G, let

$$j^{H} = j | S(E^{H} \oplus F^{H}): S(E^{H} \oplus F^{H}) \to V_{m}^{\Lambda}(E^{H} \oplus F^{H} \oplus \Lambda^{m-1}).$$

The following diagram is commutative:

where r_H and r'_H are the transformations restricting to the fixed point set by H.

Now suppose

$$j_*(\alpha) = j_*(\beta)$$

for α , $\beta \in [S(E), S(E \oplus F)]_G$. Then, by the commutativity of the above diagram,

$$j_*^{H} \boldsymbol{r}_{H}(\alpha) = j_*^{H} \boldsymbol{r}_{H}(\beta)$$

for any closed subgroup H of G. Proposition 1 implies that j_*^H is an isomorphism under the assumption (i) or (ii) in Theorem 2. Thus

$$r_{H}(\alpha) = r_{H}(\beta)$$

for any *H*. Hence $r(\alpha) = r(\beta)$. By the assumption *r* is injective, hence $\alpha = \beta$. Thus j_* is injective.

5. The group structure

Let E, F be representations of a compact Lie group G over Λ . Suppose $\dim_{\mathbf{R}} E^{c} \ge 2$. Then, according to [3; Section 6], $[S(E), S(E \oplus F)]_{G}$ has a group structure. In the similar way we may give a group structure to

$$[S(E), V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})]_G$$

so that

$$j_*: [S(E), S(E \oplus F)]_G \rightarrow [S(E), V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})]_G$$

is a group homomorphism. To show this is the purpose of this section.

Lemma 7. Suppose $\dim_{\mathbb{R}} E^{\mathbb{C}} = 2$ and $x_0 \in S(E^{\mathbb{C}})$. Let

 $\omega: [0,1] \to S(E^c) \subset S(E)$

be a path with $\omega(0) = \omega(1) = x_0$. Then there is a G-homotopy

 $H: S(E) \times [0, 1] \rightarrow S(E)$

such that

$$H_0 = H_1 = Id, \quad and$$

$$H(x_0, t) = \omega(t) \quad for \ any \quad t \in [0, 1].$$

Proof. Choose a homotopy

$$J: S(E^c) \times [0, 1] \to S(E^c) \subset S(E)$$

such that

$$J_0 = J_1 = the inclusion$$
, and
 $J(x_0, t) = \omega(t)$ for any $t \in [0, 1]$.

Denote by $(E^{c})^{\perp}$ the orthogonal complement of E^{c} in E, and denote a point of E by the form x+y where $x \in E^{c}$ and $y \in (E^{c})^{\perp}$. Define

$$H: S(E) \times [0, 1] \to S(E)$$

as

$$H(x+y, t) = ||x|| J(x/||x||, t) + y$$
 if $x \neq 0$, and
 $H(x+y, t) = y$ if $x = 0$.

Then H is a G-homotopy with the desired property. Q.E.D.

Lemma 8. Suppose dim_R $E^c \ge 2$, $x_0 \in S(E^c)$ and $y_0 \in S(E^c \oplus F^c)$. Then the natural transformations

$$\psi_1: [(S(E), x_0), (S(E \oplus F), y_0)]_G \rightarrow [S(E), S(E \oplus F)]_G$$

and

 $\psi_2: [(S(E), x_0), (V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1}), j(y_0))]_G \rightarrow [S(E), V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})]_G$ are bijective.

Proof. Consider the commutative diagram:

In [3; Section 6], ψ_1 is already seen to be bijective. The two j_* are surjective by the arguments in section 3. So it follows that ψ_2 is surjective.

It only remains to show that ψ_2 is injective. Suppose

$$\psi_2(\alpha) = \psi_2(\beta)$$

for α , $\beta \in [(S(E), x_0), (V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1}), j(y_0))]_c$. Since j_* is surjective, there are G-maps

$$f, g: S(E) \rightarrow S(E \oplus F)$$

such that $f(x_0)=y_0$, $g(x_0)=y_0$, and *jf*, *jg* are representatives of α , β , respectively. There also is a *G*-homotopy

$$K: S(E) \times [0, 1] \to V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

with $K_0 = jf$ and $K_1 = jg$. Define a path

$$\omega\colon [0,\,1] \to V^{\Lambda}_{\mathfrak{m}}(E^{\mathcal{G}} \oplus F^{\mathcal{G}} \oplus \Lambda^{\mathfrak{m}^{-1}})$$

by $\omega(t) = K(x_0, t)$ for $t \in [0, 1]$. Then

$$\omega(0) = \omega(1) = j(y_0)$$

By Proposition 1 there is a path

$$\omega'\colon [0, 1] \to S(E^c \oplus F^c)$$

such that

$$\omega'(0) = \omega'(1) = y_0,$$
 and
 $\omega \simeq j\omega'$ rel. {0, 1}.

Let D be a G-invariant, top-dimensional, small disc in S(E) with x_0 as its center, and let $D' = \frac{1}{2}D$. By radius contraction we may deform K to a G-homotopy

$$K': S(E) \times [0, 1] \rightarrow V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

such that $K'(x, t) = j\omega'(t)$ for $x \in D'$ and $t \in [0, 1]$. Moreover, if we put $f' = K'_0$ and $g' = K'_1$, then

$$f'(S(E)) \subset i(S(E \oplus F)),$$

$$g'(S(E)) \subset i(S(E \oplus F)),$$

and f', g' are G-homotopic to jf, jg rel. x_0 , respectively.

So, to show $\alpha = \beta$ we must show that f' is G-homotopic to g' rel. x_0 .

(i) Suppose dim_R $E^{c} \oplus F^{c} > 2$. By Proposition 1, $j\omega'$ is homotopic to the constant path at $j(y_{0})$ rel. {0, 1}. From this we may deform K' to a G-homotopy

$$K'': S(E) \times [0, 1] \rightarrow V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

such that

$$K_0' = f', \quad K_1'' = g', \quad \text{and}$$

 $K''(x_0, t) = j(y_0) \quad \text{for any} \quad t \in [0, 1].$

Therefore f' is G-homotopic to g' rel. x_0 .

(ii) Suppose $\dim_{\mathbf{R}} E^{c} \oplus F^{c} = 2$. Define a path

$$\omega''\colon [0,1] \to S(E^{G} \oplus F^{G})$$

by $\omega'' = (\omega')^{-1}$, i.e., $\omega''(t) = \omega'(1-t)$. Applying Lemma 7 to the path ω'' , there is a G-homotopy

 $H: S(E \oplus F) \times [0, 1] \rightarrow S(E \oplus F)$

such that

$$\begin{aligned} H_0 &= H_1 = Id , \quad \text{and} \\ H(y_0, t) &= \omega''(t) \quad \text{for any} \quad t \in [0, 1] . \end{aligned}$$

Define a G-homotopy

$$L: S(E) \times [0, 1] \to V_{\mathfrak{m}}^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

as, for $x \in S(E)$ and $t \in [0, 1]$,

$$L(x, t) = K'(x, 2t) \text{ if } 0 \le t \le 1/2, \text{ and}$$

$$L(x, t) = jH(j^{-1}g'(x), 2t-1) \text{ if } 1/2 \le t \le 1.$$

Then

$$L_0 = f', \quad L_1 = g', \text{ and}$$

 $L(x, t) = j\omega' * j\omega''(t) \text{ for } x \in D' \text{ and } t \in [0, 1]$.

 $j\omega' * j\omega''$ is homotopic to the constant path at $j(y_0)$ rel. $\{0, 1\}$. So we may deform L to a G-homotopy

$$L': S(E) \times [0, 1] \to V_{m}^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})$$

such that

$$L'_0 = f', \quad L'_1 = g', \quad \text{and}$$

 $L'(x_0, t) = j(y_0) \text{ for any } t \in [0, 1].$

Therefore f' is G-homotopic to g' rel. x_0 .

Now suppose dim_R $E^c \ge 2$, $x_0 \in S(E^c)$ and $y_0 \in S(E^c \oplus F^c)$. Let λ be the real one-dimensional subspace of E spanned by x_0 , and let λ^{\perp} be the orthogonal complement of λ in E. We may identify S(E) with a nonreduced suspension

Q.E.D.

$$\Sigma S(\lambda^{\perp}) = [0, 1] \times S(\lambda^{\perp}) / \sim .$$

Under this identification $x_0=[0, x]$ and $-x_0=[1, x]$ for $x \in S(\lambda^{\perp})$. Let Y be one of $S(E \oplus F)$ and $V_m^{\wedge}(E \oplus F \oplus \Lambda^{m-1})$. Put $z_0=y_0$ if Y is the former, and $z_0=j(y_0)$ if Y is the latter. Then we may give a group structure to $[S(E), Y]_G$ as follows. Let $[f], [g] \in [S(E), Y]_G$. By Lemma 8 we may choose f and g in such a way that $f(-x_0)=z_0$ and $g(x_0)=z_0$. Define $h: S(E) \to Y$ as, for $[t, x] \in \Sigma(\lambda^{\perp})=S(E)$,

$$h([t, x]) = f([2t, x])$$
 if $0 \le t \le 1/2$, and
 $h([t, x)] = g([2t-1, x])$ if $1/2 \le t \le 1$.

Define [f]+[g]=[h]. This gives a group structure to $[S(E), Y]_G$, and the transformation

$$j_*: [S(E), S(E \oplus F)]_G \rightarrow [S(E), V_m^{\Lambda}(E \oplus F \oplus \Lambda^{m-1})]_G$$

becomes a group homomorphism. We note that this group structure does not depend on the choice of $x_0 \in S(E^c)$ and $y_0 \in S(E^c \oplus F^c)$.

References

- [1] H. Hauschild: Zerspaltung äquivarianter Homotopiemengen, Math. Ann. 230 (1977), 279–292.
- [2] D. Husemoller: Fibre bundles (second edition), Springer-Verlag, New York-Heidelberg-Berlin, 1975.
- [3] R.L. Rubinsztein: On the equivariant homotopy of spheres, Dissertationes Math. (Rozprawy Mat.), 134 (1976).
- [4] N. Steenrod: The topology of fibre bundles, Princeton University Press, Princeton, 1951.

Department of Mathematics Yamaguchi University Yamaguchi 753, Japan