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It is well-known that any orientable closed 3-manifold is a 3-fold irregular
branched covering space of a 3-sphere branched along a knot. It is an inter-
esting problem to know which 3-manifold can be a 3-fold irregular branched
covering space of a given knot. In this paper we consider those of pretzel
knots.

For the permutation group S3 on {0, 1, 2}, let a=(0l)f δ=(02), c=(12),
#=(012), y=(02l). Then there are relations a2=b2=(?=l, ab=bc=ca = x>

ba=ac=cb=y. Especially, we remark the following relations:

aba"1 = e,

bab'1 = c,

cac"1 = b,

xax"1 = b,

yay"1 = c,

aca 1 = b ,

δdΓ1 = α ,

cfor1 = a,

ΛAΛΓ1 — £ y

yby"1 = a,

axa = y,
bxb-^y,

cxc"1 = y,

xcx"1 = a,

ycy"1 = b,

aya 1

byb"1

eye"1

xyx"1

yxy"1

= x,

= x,

= x,

= y>
= X .

A knot group G has a Wirtinger presentation:

x\y X2> '"> Xn\ ?}> ^ΐ> "' y ^n-l) \ * )

where each relator r{ indicates the relation form ri=x)(i)Xixj'i)xjlι ( 6 = ± 1 ) at a
crossing as in Fig. 1.

Then a homomorphism from a knot group G to S3 .
satisfies a condition as follows. I

1 xi+ϊ

Proposition 1. Let the above (1) be a Wirtinger ' " • xj(i)

presentation of a knot group G. Then a homomorphism I χ%

h from G to S3 satisfies one of the fallowings. *

(i) h(Xi)=a (or b, c) ( ί = l , 2, ..., n\ Fig. l
(ii) h(Xi)=x (ory) ( i = l , 2, •••, n).

P r o p o s i t i o n 2 . L^ί (Λ?U, •••, x l n χ i —,xml,'~, x m t t f n ; rlf •••, r4) 4β α Wirtinger
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presentation of a link group of an m-component link, where xily xi2y , xin. represent
meridians of the i-th component ( z=l , 2, •••, m). Then a homomorphism h from
this link group to S3 satisfies one of the followings.

(i) h(xu)=a {or by c) (j=\9 2, - . , »,),
(ii) h(Xij)=x (or y) ( /= 1, 2, , »,).

If all generators are mapped to a (or b, c) by hy then the branched covering
space corresponding to h is the disjoint union of a 3-sphere and the 2-fold regu-
lar branched covering space of the knot. And if all generators are mapped
to x (or y) by hy then that is the 3-fold regular branched covering space of the
knot. So, the branched covering space corresponding to h is 3-fold irregular,
iff h satisfies the condition (i) of Proposition 1 and there exist generators x{

and Xj with h(xt)^h(xj).
First, we consider the image of meridians by h at twists, especially for

typical cases as in Fig. 2.

Since c?=bz—c2=ly we can ignore the orientation of a knot or a link.
If there is a block of three half-twists at the projection of a link L, deform

L by the operation cancelling three half-twists as shown in Fig. 3 we have a
new link L'. Then, determining the image of meridians of L' except at the
three half-twists to be the same to that by hy we have a homomorphism h'
from the link group of L' to Sz. We call hr a homomorphism induced from h.

I
Fig. 3

Since it is easily seen that the inverse of the above operation is also an
operation cancelling three half-twists after a slight deformation of the projection
of Lf as Fig. 4, we have
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Fig. 4

Proposition 3. Let V be a link obtained from a link L by operation cancel-

ling three half-twists, and G and Gr be the link group of L and ZΛ Then the

fallowings are equivalent,

(a) There exists a homomorphism h from G to S3 satisfying the condition

(i) of Proposition 2.

(b) There exists a homomorphism h' from Gr to S3 satisfying the condition

(i) of Proposition 2.

We regard a part of the three half-twists as a trivial tangle i.e. a pair of

a 3-ball and two proper arcs which are trivial and separated in the 3-ball. Since

the irregular 3-fold branched covering space of a trivial tangle is a 3-ball (Burde

[2]), we have

Proposition 4 (Montesinos [5]). Let L' be a link obtained from L by ope-

ration cancelling three half-twists, and G and G* be the link group of L and Lf.

Suppose that a homomorphism h from G to Sz exists and h' is a homomorphism

induced by h. Furthermore, at the three half-twists deformed by operation, we

suppose that the images of medidίans of the two arcs by h are distinct and trans-

positions. Then the 3-fold irregular branched covering space of a 3-sphere branched

along L corresponding to h is homeomorphic to the irregular 3 -fold branched covering

space of a 3-sphere branched along L' corresponding to hf.

From Proposition 4, we can deside all 3-fold irregular branched covering

spaces of a 3-sρhere branched along a pretzel knot. A pretzel knot is a knot

consisting of a row of 2-strand braids of qu q2, ~ ,qm half-twists, which we

denote by k(qv q2, •••, qm). We assume ^4=0 for i=l, 2, •••, m. Fig. 5 shows

k(3, 3, - 2 , - 1 , - 5 ) .

Theorem. Each 3-fold irregular branched covering space of a 3-sphere

branched along a pretzel knot, if it exists, is isomorphic to a 3-sphere, a lens space

of type (p, 1) for some non-negative integer p, or a connected sum of those spaces.
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K{όy J , Z, 1, j)

Fig. 5

Proof. We note that a pretzel knot does not always have an irregular
3-fold cover.

First, we consider the case that the image of meridians of the top and bot-
tom lines of a pretzel knot by h are distinct. In this case, we see each j , = ± l
{mod 3) from Fig. 2. So, by operations cancelling three half-twists, this pretzel
knot can be deformed to k(ly 1, •••, 1) or &(—1, — 1 , •••, —1). Moreover, on
each operation cancelling three half-twists, the condition of Proposition 4
is satisfied. Here the number of " l ' "s or " — l'"s in the above k(l, 1, •••, 1)
or k(—1, — 1 , •••, —1) is a multiple of three, and we can obtain a trivial link
of 2-comρonents from this link by operations cancelling three half-twists such
that the image of meridians of components by h are distinct. Since the 3-fold
irregular branched covering space of a 3-sphere branched along a trivial link

X

b a

c

X

b

b

c c

ϋ ' " U

Fig. 6



3-FOLD IRREGULAR BRANCHED COVERING SPACES 253

of 2-components is a 3-sphere, those of the original pretzel knot is also a 3-
sphere.

Secondly, we consider the case that the image of meridians of the top
and bottom lines of a pretzel knot by h are same. In this case, the image of
meridians of 2-strand braids by h must be (i) or (ii) shown as in Fig. 7.

a a

X
a a

(0

X
a b

(ii):

Fig. 7

Fig. 8
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Furthermore, for the case (i) the number of half-twists is arbitrary, but,
for the case (ii) the number of half-twists is a multiple of three. For the case
(ii), we can deform the 2-strand braid by operations cancelling three half-twists
to the 2-strand braid with no half-twists and this deformation satisfies the con-
dition of Proposition 4. But, for the case (i), we cannot do, since the condition
of Proposition 4 is not satisfied. By operations cancelling three half-twists
only for the case (ii), this pretzel knot can be deformed to a split link such that
each component is a trivial knot, a (p> 2)-torus knot, or a connected sum of
those knots and that every meridians of the same component are mapped by
h to the same element α, b, or c in S3.

Regarding S2xS1 as a lens space of type (0, 1), the 2-fold branched cover-
ing space branched along a (p, 2)-torus knot is isomorphic to a lens space of
type (p, 1). Since the above link is a split sum of trivial knots, (py 2)-torus
knots, and their connected sum, the 3-fold irregular branched covering space
of the above link corresponding to h is isomorphic to a 3-sphere, a lens space
of type (p9 1), or a connected sum of those spaces, and this covering space is
isomorphic to the 3-fold irregular branched covering space branched along
the original pretzel knot.

The proof is complete.
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