

Title	Some properties of derived Hopf algebras of λ -modified differential Hopf algebras
Author(s)	Yosimura, Zen-ichi
Citation	Osaka Journal of Mathematics. 1972, 9(1), p. 113–130
Version Type	VoR
URL	https://doi.org/10.18910/9997
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

SOME PROPERTIES OF DERIVED HOPF ALGEBRAS OF λ -MODIFIED DIFFERENTIAL HOPF ALGEBRAS

ZEN-ICHI YOSIMURA

(Received July 3, 1971)

In [1] we defined a λ -modified differential Hopf algebra A (or simply a (d, λ) -Hopf algebra) and introduced the derived Hopf algebra $\Phi_{\lambda}(A) = \Psi_{\lambda}(A)$, maps $\xi_{\lambda}, \eta_{\lambda}$, etc., in order to characterize coprimitivity and primitivity of A. In this note we study some properties of the derived Hopf algebra. Definitions and notations are referred to [1] in the present work.

1. Throughout the present work we understand that K is a field of characteristic $p \neq 0$, $\lambda \in K$ and all modules are G_2 -modules over K unless otherwise stated.

Let M be a differential G_2 -module. Suppose p is odd. For each (j, k), $1 \le j$, $k \le p$, consider the map

 $1 + \lambda d_{d_k} : M^{\otimes p} \to M^{\otimes p}$

where 1 is the identity map of $M^{\otimes p} = M \otimes \cdots \otimes M$ (*p* times) and d_i is the *i*-th partial differential of $M^{\otimes p}$ for $1 \leq i \leq n$, [1], (2.2). Since the partial differential are anti-commutative we see immediately

- (1.1) i) $(1+\lambda d_j d_k)(1+\lambda d_i d_h)=(1+\lambda d_i d_k)(1+\lambda d_j d_k),$
 - ii) $(1+\lambda d_j d_k)(1+\lambda d_k d_j)=1$,
 - iii) $1 + \lambda d_{j}d_{k}$ is an automorphism of a differential G_{2} -module,
 - iv) $1 + \lambda d_{i}d_{k}$ is natural, i.e.,

$$(1+\lambda d_j d_k)f^{\otimes p} = f^{\otimes p}(1+\lambda d_j d_k)$$

for any map $f: M \rightarrow N$ of differential G_2 -modules.

We define a natural automorphism

$$B_{p,\lambda}: M^{\otimes p} \to M^{\otimes p}$$

by

(1.2)
$$B_{p,\lambda} = \prod_{1 \leq j, k \leq p, k-j \geq (p+1)/2} (1 + \lambda d_j d_k)$$

as the composition of maps $1 + \lambda d_j d_k$.

By (1.1) ii) $B_{p,-\lambda}$ is the inverse morphism of $B_{p,\lambda}$.

Let $C_p: M^{\otimes p} \to M^{\otimes p}$ be the cyclic permutation and $C_{p,\lambda}: M^{\otimes p} \to M^{\otimes p}$ be the λ -modified cyclic permutation, [1], **3.3.** As is easily seen we have

(1.3) $d_1C_p = C_pd_p, d_{i+1}C_p = C_pd_i \text{ for } 1 \le i \le p-1 \text{ and } C_{p,\lambda} = (1+\lambda d_1d)C_p.$

Then we obtain

(1.4) **Lemma.** The following relation

$$C_{p,\lambda}B_{p,\lambda} = B_{p,\lambda}C_p$$

holds. In particular, $B_{p,\lambda}(x^{\otimes p})$ is $C_{p,\lambda}$ -fixed for any $x \in A$.

Proof. Making use of (1.1), (1.2) and (1.3) we get

$$C_{p,\lambda}B_{p,\lambda} = (1+\lambda d_{1}d)C_{p}\prod_{1\leq j< k\leq p,k-j\geq (p+1)/2}(1+\lambda d_{j}d_{k})$$

= $\prod_{2\leq j\leq (p+1)/2}(1+\lambda d_{1}d_{j})\prod_{(p+3)/2\leq k\leq p}(1+\lambda d_{1}d_{k})$
 $\prod_{2\leq j< k\leq p,k-j\geq (p+1)/2}(1+\lambda d_{j}d_{k})\prod_{2\leq j\leq (p+1)/2}(1+\lambda d_{j}d_{1})C_{p}$
= $\prod_{1\leq j< k\leq p,k-j\geq (p+1)/2}(1+\lambda d_{j}d_{k})C_{p} = B_{p,\lambda}C_{p}.$ q.e.d.

REMARK. In [1], (5.10) we proved that there exists an element $b_{p,\lambda}(x)$ such that $x^{\otimes p} + b_{p,\lambda}(x)$ is $C_{p,\lambda}$ -fixed. Putting $B_{p,\lambda}(x^{\otimes p}) = x^{\otimes p} + b_{p,\lambda}(x)$, the above lemma describes $b_{p,\lambda}(x)$ explicitly.

Put

$$\begin{split} \Delta_0 &= 1 - C_p, \, \Delta_{\lambda} = 1 - C_{p,\lambda}, \, \tilde{\Delta}_0 = 1 - C_p \otimes C_p, \\ \Sigma_0 &= \sum_{k=0}^{p-1} C_p^k, \, \Sigma_{\lambda} = \sum_{k=0}^{p-1} C_{p,\lambda}^k \quad \text{and} \quad \tilde{\Sigma}_0 = \sum_{k=0}^{p-1} C_p^k \otimes C_p^k, \end{split}$$

For a differential G_2 -module M we put

$$\Phi_0(M) = \operatorname{Ker} \Delta_0/\operatorname{Im} \Sigma_0, \qquad \Phi_{\lambda}(M) = \operatorname{Ker} \Delta_{\lambda}/\operatorname{Im} \Sigma_{\lambda},$$

 $\Psi_0(M) = \operatorname{Ker} \Sigma_0/\operatorname{Im} \Delta_0 \quad \text{and} \quad \Psi_{\lambda}(M) = \operatorname{Ker} \Sigma_{\lambda}/\operatorname{Im} \Delta_{\lambda}.$

By (1.4) the map $B_{p,\lambda}$ induces natural isomorphisms

 $(1.5) \quad \Phi(B_{p,\lambda}): \Phi_0(M) \to \Phi_{\lambda}(M) \quad and \quad \Psi(B_{p,\lambda}): \Psi_0(M) \to \Psi_{\lambda}(M)$

of G_2 -modules.

A permutation $U_p: (M \otimes M)^{\otimes p} \to M^{\otimes p} \otimes M^{\otimes p}$ and a λ -modified permutation $U_{p,\lambda}: (M \otimes M)^{\otimes p} \to M^{\otimes p} \otimes M^{\otimes p}$ are defined by

$$U_{p} = T_{p}(T_{p-1}T_{p+1})\cdots(T_{2}T_{4}\cdots T_{2}p_{-2})$$

and

$$U_{\boldsymbol{p},\boldsymbol{\lambda}} = T_{\boldsymbol{p},\boldsymbol{\lambda}}(T_{\boldsymbol{p}-1,\boldsymbol{\lambda}}T_{\boldsymbol{p}+1,\boldsymbol{\lambda}})\cdots(T_{2,\boldsymbol{\lambda}}T_{4,\boldsymbol{\lambda}}\cdots T_{2\boldsymbol{p}-2,\boldsymbol{\lambda}})$$

where T_i is the *i*-th partial switching map and $T_{i,\lambda}$ is the *i*-th partial λ -modified switching map for $1 \le i \le 2p-1$, i.e., $T_{i,\lambda} = (1+\lambda d_i d_{i+1}) T_i$, [1], (2.16). Since $T_i d_i = d_{i+1}T_i$, $T_i d_{i+1} = d_iT_i$ and $T_i d_j = d_jT_i$ for $j \ne i$, i+1 we have the following relation

(1.6) $U_{p,\lambda} = \prod_{1 \leq j < k \leq p} (1 + \lambda d_k d_{p+j}) U_p.$

2. Let p be a prime number and S_k be the set of k-tuples of integers defined by

$$S_{k} = \{(i_{1}, \cdots, i_{k}); 0 \leq i_{1} < \cdots < i_{k} \leq p-1\}, 1 \leq k < p.$$

Elements (i_1, \dots, i_k) and (i'_1, \dots, i'_k) of S_k are said to be related provided

$$(i_2 - i_1, \cdots, i_k - i_1) = (i'_{j+1} - i'_j, \cdots, i'_k - i'_j, p + i'_i - i'_j, \cdots, p + i'_{j-1} - i'_j)$$

for some *j*.

(2.1) This relation is an equivalence relation.

Proof. Denote by $(i_1, \dots, i_k)_{\widetilde{j}}(i'_1, \dots, i'_k)$ if $(i_2-i_1, \dots, i_k-i_1)=(i'_{j+1}-i'_j, \dots, i'_k-i'_j, p+i'_1-i'_j, \dots, p+i'_{j-1}-i'_j)$ for some j. Then we see immediately that $(i_1, \dots, i_k)_{\widetilde{1}}(i_1, \dots, i_k), (i_1, \dots, i_k)_{\widetilde{j}}(i'_1, \dots, i'_k)$ implies $(i'_1, \dots, i'_k)_{\widetilde{k-j+2}}(i_1, \dots, i_k)$ and $(i_1, \dots, i_k)_{\widetilde{j}}(i'_1, \dots, i'_k)_{\widetilde{j'}}(i'_1, \dots, i'_k)$ imply $(i_1, \dots, i_k)_{\widetilde{j+j'-1}}$ $(i'_1, \dots, i'_k)_{\widetilde{j'}}$.

Let \tilde{S}_k be the quotient set of S_k defined by the above equivalence relation and $\pi: S_k \to \tilde{S}_k$ be the natural projection.

(2.2) **Lemma.** If $\pi(i_1, \dots, i_k) = \pi(0, s_2, \dots, s_k)$ for $1 \le k < p$, then there exists a unique integer $j, 1 \le j \le k$, such that

$$(s_2, \dots, s_k) = (i_{j+1} - i_j, \dots, i_k - i_j, p + i_1 - i_j, \dots, p + i_{j-1} - i_j).$$

Proof. By definition there exists a required integer $j, 1 \le j \le k$. We shall show that such an integer j is unique when $1 \le k < p$. Suppose that $(s_2, \dots, s_k) = (i_{j+1}-i_j, \dots, p+i_{j-1}-i_j) = (i_{j'+1}-i_j, \dots, p+i_{j'-1}-i_{j'})$. Then we have

$$\sum_{t=2}^{k} s_{t} = (j-1)p + \sum_{t=1}^{k} i_{t} - k \cdot i_{j} = (j'-1)p + \sum_{t=1}^{k} i_{t} - k \cdot i_{j'}.$$

Hence $(j-j')p = k(i_j - i_{j'})$ and j = j'.

We may choose elements of form $(0, s_2, \dots, s_k)$ as representatives of the above equivalence classes in S_k because $\pi(i_1, \dots, i_k) = \pi(0, i_2 - i_1, \dots, i_k - i_1)$. We identify this set of representatives with \tilde{S}_k . Using (2.2) we have the correspondence τ_k between S_k and $\tilde{S}_k \times Z_p$, $1 \le k < p$, defined by

(2.3)
$$\tau_{\mathbf{k}}(i_1, \cdots, i_k) = ((0, s_2, \cdots, s_k), i_j)$$

where $(0, s_2, \dots, s_k)$ is the representative of $\pi(i_1, \dots, i_k)$ and $(s_2, \dots, s_k) = (i_{j+1} - i_j, \dots, i_k - i_j, p + i_1 - i_j, \dots, p + i_{j-1} - i_j)$.

(2.4) Lemma. τ_k is a one to one correspondence.

Proof. Suppose that $\tau_k(i_1, \dots, i_k) = \tau_k(i'_1, \dots, i'_k)$, i.e., $\pi(i_1, \dots, i_k) = \pi(i'_1, \dots, i'_k)$ and $i_j = i'_j$. Then

$$(i_{j+1}, \dots, i_k, p+i_1, \dots, p+i_{j-1}) = (i'_{j'+1}, \dots, i'_k, p+i'_1, \dots, p+i'_{j'-1}),$$

hence $(i_1, \dots, i_k) = (i'_1, \dots, i'_k)$. And also

$$\tau_{k}(s_{j+1}+i-p, \cdots, s_{k}+i-p, i, s_{2}+i, \cdots, s_{j}+i) = ((0, s_{2}, \cdots, s_{k}), i)$$

q.e.d.

for $p-s_{j+1} \leq i < p-s_j$. Therefore τ_k is one to one.

(2.4) means that a equivalence class in S_k , $1 \le k < p$, is a subset which consists of just p elements.

Let M be a differential G_2 -module over K, char K=p and $t: M \to M$ be a map of period p, i.e., $t^p=1$. Put $\Delta=1-t$ and $\Sigma=\sum_{i=0}^{p-1} t^i$. We consider maps $x_i: M \to M, 1 \le i \le p$, such that

(2.5)
$$x_1 t = tx_p, x_{i+1} t = tx_i \text{ for } 1 \le i \le p-1 \text{ and } x_i x_j = x_j x_i \text{ for } 1 \le i, j \le p.$$

If $\tau_k(i_1, \dots, i_k) = ((0, s_2, \dots, s_k), i_j)$ it follows immediately from (2.5) that

 $t^{i_j}x_1x_{s_2+1}\cdots x_{s_k+1}t^{p-i_j}=x_{i_1+1}\cdots x_{i_k+1}$.

Denote by σ_k the k-th elementary symmetric polynomial of p variables. Since τ_k is one to one by (2.4) we can express $\sigma_k(x_1, \dots, x_p)$ as

$$\sigma_{k}(x_{1}, \cdots, x_{p}) = \sum_{(0, s_{2}, \cdots, s_{k}) \in \tilde{s}_{k}} \sum_{i=0}^{p-1} t^{i} x_{1} x_{s_{2}+1} \cdots x_{s_{k}+1} t^{p-i}$$

for $1 \leq k < p$. As is easily seen we have

$$\sum_{i=0}^{p-1} t^i x_1 x_{s_2+1} \cdots x_{s_k+1} t^{p-i} (\operatorname{Ker} \Delta) \subset \operatorname{Im} \Sigma$$

and

$$\sum_{i=0}^{p-1} t^i x_1 x_{s_2+1} \cdots x_{s_k+1} t^{p-i} (\operatorname{Ker} \Sigma) \subset \operatorname{Im} \Delta .$$

Hence

$$\sigma_k(x_1, \dots, x_p)(\operatorname{Ker} \Delta) \subset \operatorname{Im} \Sigma$$
 and $\sigma_k(x_1, \dots, x_p)(\operatorname{Ker} \Sigma) \subset \operatorname{Im} \Delta$

for $1 \leq k < p$. Thus we obtain

(2.6) Lemma.

$$(1+x_1)\cdots(1+x_p)|\operatorname{Ker}\Delta\equiv 1+x_1\cdots x_p \mod \operatorname{Im}\Sigma$$

and

$$(1+x_1)\cdots(1+x_p)|\operatorname{Ker}\Sigma\equiv 1+x_1\cdots x_p \mod \operatorname{Im}\Delta.$$

For $0 \leq s \leq p$, define maps

$$D^s_{p,\lambda}: M^{\otimes p} \to M^{\otimes p}$$
 and $\tilde{D}^s_{p,\lambda}: M^{\otimes p} \otimes M^{\otimes p} \to M^{\otimes p} \otimes M^{\otimes p}$

by

(2.7)
$$D_{p,\lambda}^{s} = \prod_{1 \leq j \leq p-s} (1 + \lambda d_{j} d_{s+j}) \prod_{1 \leq k \leq s} (1 + \lambda d_{p-s+k} d_{k})$$

and

$$\tilde{D}^s_{p,\lambda} = \prod_{1 \leq j \leq p-s} (1 + \lambda d_j d_{p+s+j}) \prod_{1 \leq k \leq s} (1 + \lambda d_{p-s+k} d_{p+k})$$

respectively. Putting

$$x_j = \lambda d_j d_{s+j}, \, \tilde{x}_j = \lambda d_j d_{p+s+j} \text{ for } 1 \leq j \leq p-s$$

and

$$x_{p-s+k} = \lambda d_{p-s+k} d_k, \ \tilde{x}_{p-s+k} = \lambda d_{p-s+k} d_{p+k} \quad \text{for } 1 \leq k \leq s,$$

by (1.3) we have

(2.8)
$$\begin{aligned} x_1 C_p &= C_p x_p, \ \tilde{x}_1 (C_p \otimes C_p) = (C_p \otimes C_p) \tilde{x}_p \\ x_{i+1} C_p &= C_p x_i, \ \tilde{x}_{i+1} (C_p \otimes C_p) = (C_p \otimes C_p) \tilde{x}_i \ for \ 1 \leq i \leq p-1 . \end{aligned}$$

and

$$x_i x_j = x_j x_i, \ \tilde{x}_i \tilde{x}_j = \tilde{x}_j \tilde{x}_i \quad for \ 1 \leq i, j \leq p$$
.

By an easy calculation we see

(2.9)
$$x_1 \cdots x_p = 0$$
 and $\tilde{x}_1 \cdots \tilde{x}_p = (-1)^{p(p-1)/2} \lambda^p d_1 \cdots d_{2p}$.

Remark that

(2.10)
$$D^s_{p,\lambda} = (1+x_1)\cdots(1+x_p)$$
 and $\tilde{D}^s_{p,\lambda} = .(1+\tilde{x}_1)\cdots(1+\tilde{x}_p)$.

Then, by (2.6), (2.8) and (2.9) we have

$$\begin{array}{l} D^{s}_{\boldsymbol{p},\lambda} | \operatorname{Ker} \Delta_{0} \equiv 1 \mod \operatorname{Im} \Sigma_{0}, \quad D^{s}_{\boldsymbol{p},\lambda} | \operatorname{Ker} \Sigma_{0} \equiv 1 \mod \operatorname{Im} \Delta_{0} \\ \tilde{D}^{s}_{\boldsymbol{p},\lambda} | \operatorname{Ker} \tilde{\Delta}_{0} \equiv 1 + (-1)^{p(p^{-1})/2} \lambda^{p} d_{1} \cdots d_{2p} \mod \operatorname{Im} \tilde{\Sigma}_{0} \end{array}$$

and

$$\tilde{D}^{s}_{p,\lambda} | \operatorname{Ker} \tilde{\Sigma}_{0} \equiv 1 + (-1)^{p(p-1)/2} \lambda^{p} d_{1} \cdots d_{2p} \mod \operatorname{Im} \tilde{\Delta}_{0}.$$

More generally we obtain by an induction on n that

(2.11)
$$\prod_{1 \le k \le n} D_{p,\lambda}^{s_k} | \operatorname{Ker} \Delta_0 \equiv 1 \quad \mod \operatorname{Im} \Sigma_0,$$
$$\prod_{1 \le k \le n} D_{p,\lambda}^{s_k} | \operatorname{Ker} \Sigma_0 \equiv 1 \quad \mod \operatorname{Im} \Delta_0$$

and

(2.12)
$$\prod_{1 \leq k \leq n} \tilde{D}_{p,\lambda}^{s_k} | \operatorname{Ker} \tilde{\Delta}_0 \equiv 1 + (-1)^{p(p-1)/2} n \cdot \lambda^p d_1 \cdots d_{2p} \equiv \tilde{D}_{p,n\lambda}^0 | \operatorname{Ker} \tilde{\Delta}_0 \mod \operatorname{Im} \tilde{\Sigma}_0,$$

$$\prod_{1\leq k\leq n} \tilde{D}_{p,\lambda}^{s_k} |\operatorname{Ker} \tilde{\Sigma}_0 \equiv D_{p,n\lambda}^0 |\operatorname{Ker} \tilde{\Sigma}_0 \quad \text{mod Im } \tilde{\Delta}_0.$$

3. Throughout this section we suppose p is odd. For $\lambda \in K$ we define another element $\mu = \mu(\lambda) \in K$ by

$$\mu = \mu(\lambda) = \lambda/2$$
.

Let A be a differential algebra (or coalgebra). We define another structure of differential algebra (or coalgebra) on A by endowing with multiplication $_{\mu}\varphi = \varphi(1+\mu d\sigma \otimes d)$ (or comultiplication $_{\mu}\psi = (1-\mu d\sigma \otimes d)\psi$) where σ is the canonical involution [1], (1.1). Denote this by μA . Then we have

(3.1) **Lemma.** i) A is associative or λ -commutative if and only if μA is associative or commutative,

ii) $_{\mu}\varphi_{n}^{wn} = \varphi_{n}^{wn} \prod_{1 \le j < k \le n+1} (1 + \mu d_{j}d_{k}) \text{ (or }_{\mu}\psi_{n}^{wn} = \prod_{1 \le j < k \le n+1} (1 - \mu d_{j}d_{k})\psi_{n}^{wn})$ for each $w_{n} \in W_{n}$, the set (1.7) of [1],) $E_{n}^{n}(A) = E_{n}^{n}(A) = C_{n}^{n}(A)$ for all $n \ge 1$

iii) $F^n(\mu A) = F^n(A)$ (or $G^n(\mu A) = G^n(A)$) for all $n \ge 1$.

Proof. First we prove ii) by an induction on *n*. In case n=1 it is the definition that $_{\mu}\varphi = \varphi(1+\mu d_1d_2)$ (or $_{\mu}\psi = (1-\mu d_1d_2)\psi$). As in [1], (1.18) we can express as $w_n = (1, w_s, s+1+w_{n-s-1})$ for some $s, 0 \le s < n$. Then

$$\begin{split} & \mu \varphi_n^{wn} = \mu \varphi(\mu \varphi_s^{ws} \otimes \mu \varphi_{n-s-1}^{wn-s-1}) \\ & = \varphi(1 + \mu d_1 d_2)(\varphi_s^{ws} \otimes \varphi_{n-s-1}^{wn-s-1}) \prod_{1 \leq j < k \leq s+1} (1 + \mu d_j d_k) \prod_{1 \leq i < h \leq n-s} (1 + \mu d_{s+i+1} d_{s+h+1}) \\ & = \varphi_n^{w_n} \prod_{1 \leq r \leq s+1, \ 1 \leq t \leq n-s} (1 + \mu d_r d_{s+t+1}) \prod_{1 \leq j < k \leq s+1} (1 + \mu d_j d_k) \\ & \prod_{1 \leq i < h \leq n-s} (1 + \mu d_{s+i+1} d_{s+h+1}) = \varphi_n^{w_n} \prod_{1 \leq j < k \leq n+1} (1 + \mu d_j d_k) \\ & \text{(or} \qquad \mu \Psi_n^{w_n} = \prod_{1 \leq j < k \leq n+1} (1 - \mu d_j d_k) \Psi_n^{w_n}), \end{split}$$

where we apply induction hypotheses to s and n-s-1.

It follows immediately from ii) and [1], (1.8) (or (1.8*)) that $F^{n}(\mu A) \subset F^{n}(A)$ (or $G^{n}(A) \subset G^{n}(\mu A)$). On the other hand,

$$\varphi_n^{w_n} = {}_{\mu} \varphi_n^{w_n} \prod_{1 \le j < k \le n+1} (1 - \mu d_j d_k) \text{ (or } \psi_n^{w_n} = \prod_{1 \le j < k \le n+1} (1 + \mu d_j d_k)_{\mu} \psi_n^{w_n}),$$

hence $F^{n}(A) \subset F^{n}(\mu A)$ (or $G^{n}(\mu A) \subset G^{n}(A)$). Thus

$$F^{n}(A) = F^{n}(\mu A) \text{ (or } G^{n}(A) = G^{n}(\mu A)).$$

i) is obvious by ii) and [1], (3.3).

 $\Phi_{\lambda}(A)$ and $\Phi_{0}(\mu A)$ (or $\Psi_{\lambda}(A)$ and $\Psi_{0}(\mu A)$) become differential algebras (or coalgebras) which have multiplications $\Phi_{\lambda}(\varphi)$ and $\Phi_{0}(\mu\varphi)$ (or comultiplications $\Psi_{\lambda}(\psi)$ and $\Psi_{0}(\mu\psi)$) induced by $\varphi_{\lambda} = \varphi^{\otimes p} U_{p,\lambda}^{-1}$ and $\mu \varphi^{\otimes p} U_{p}^{-1}$ (or $\psi_{\lambda} = U_{p,\lambda} \psi^{\otimes p}$ and $U_{p\mu} \psi^{\otimes p}$) respectively. Remark that differentials of them are trivial, [1], (5.12).

Here we obtain the following relationship between $\Phi_{\lambda}(A)$ and $\Phi_{0}(\mu A)$ (or $\Psi_{\lambda}(A)$ and $\Psi_{0}(\mu A)$).

(3.2) **Proposition.** The map $B_{p,\lambda}$ induces a natural isomorphism

$$\Phi(B_{p,\lambda}): \Phi_0(\mu A) \to \Phi_{\lambda}(A) \quad (\text{or } \Psi(B_{p,\lambda}): \Psi_0(\mu A) \to \Psi_{\lambda}(A))$$

of differential algebras (or coalgebras).

The above proposition follows immediately from the following

(3.3) Lemma.

$$\varphi^{\otimes p} U_{p,\lambda}^{-1}(B_{p,\lambda} \otimes B_{p,\lambda}) |\operatorname{Ker} \Delta_0 \otimes \operatorname{Ker} \Delta_0 \equiv B_{p,\lambda \mu} \varphi^{\otimes p} U_p^{-1} |\operatorname{Ker} \Delta_0 \otimes \operatorname{Ker} \Delta_0$$

mod Im Σ_{λ}

(or
$$(B_{p,\lambda}\otimes B_{p,\lambda})U_{p^{\mu}}\psi^{\otimes p}|\operatorname{Ker} \Sigma_{0} \equiv U_{p,\lambda}\psi^{\otimes p}B_{p,\lambda}|\operatorname{Ker} \Sigma_{0}$$

 $\operatorname{mod} (A^{\otimes p})_{\lambda}\otimes \operatorname{Im} \Delta_{\lambda} + \operatorname{Im} \Delta_{\lambda}\otimes (A^{\otimes p})_{\lambda}).$

Proof. The case of algebras: Using (1.1), (1.2) and (1.6) we compute

$$\begin{split} \varphi^{\otimes p} U_{p,\lambda}^{-1} (B_{p,\lambda} \otimes B_{p,\lambda}) \\ = \varphi^{\otimes p} U_{p}^{-1} (\prod_{k-j \leq (p-1)/2} (1 - \lambda d_{k} d_{p+j}) \\ & \prod_{k-j \geq (p+1)/2} (1 - \lambda d_{k} d_{p+j}) (1 + \lambda d_{j} d_{k}) (1 + \lambda d_{p+j} d_{p+k})) \\ = \varphi^{\otimes p} U_{p}^{-1} \prod_{k-j \leq (p-1)/2} (1 - \lambda d_{k} d_{p+j}) \\ & \prod_{k-j \geq (p+1)/2} (1 + \lambda (d_{j} + d_{p+j}) (d_{k} + d_{p+k})) (1 - \lambda d_{j} d_{p+k})) \\ = B_{p,\lambda} \varphi^{\otimes p} U_{p}^{-1} \prod_{k-j \leq (p-1)/2} (1 - \lambda d_{k} d_{p+j}) \prod_{k-j \geq (p+1)/2} (1 - \lambda d_{j} d_{p+k}) \end{split}$$

where \prod runs over $1 \leq j < k \leq p$. By (2.7) we note that

$$\prod_{1 \leq j < k \leq p} (\prod_{k-j \geq (p+1)/2} (1 - \lambda d_j d_{p+k}) \prod_{k-j \leq (p-1)/2} (1 - \lambda d_k d_{p+j}))$$

= $\prod_{1 \leq s \leq (p-1)/2} (\prod_{1 \leq j \leq s} (1 - \lambda d_j d_{2p-s+j}) \prod_{1 \leq j \leq p-s} (1 - \lambda d_{s+j} d_{p+j}))$
= $\prod_{1 \leq s \leq (p-1)/2} \tilde{D}_{p,-\lambda}^{p-s}.$

119

Consequently we obtain

$$\varphi^{\otimes p} U_{p,\lambda}^{-1}(B_{p,\lambda} \otimes B_{p,\lambda}) = B_{p,\lambda} \varphi^{\otimes p} U_p^{-1} \prod_{1 \leq s \leq (p-1)/2} \tilde{D}_{p,-\lambda}^{p-s}.$$

On the other hand we obtain

$$_{\mu}\varphi^{\otimes p}U_{p}^{-1} = \varphi^{\otimes p}U_{p}^{-1}\prod_{1\leq j\leq p}(1+\mu d_{j}d_{p+j}) = \varphi^{\otimes p}U_{p}^{-1}\tilde{D}_{p,\mu}^{0}.$$

Hence, by making use of (1.4) and (2.12) we have

$$\varphi^{\otimes p} U_{p,\lambda}^{-1}(B_{p,\lambda} \otimes B_{p,\lambda}) | \operatorname{Ker} \Delta_0 \otimes \operatorname{Ker} \Delta_0$$

= $B_{p,\lambda} \varphi^{\otimes p} U_p^{-1} \prod_{1 \le s \le (p-1)/2} \widetilde{D}_{p,-\lambda}^{p-s} | \operatorname{Ker} \Delta_0 \otimes \operatorname{Ker} \Delta_0$
= $B_{p,\lambda} \varphi^{\otimes p} U_p^{-1} \widetilde{D}_{p,-((p-1)/2)\lambda}^0 | \operatorname{Ker} \Delta_0 \otimes \operatorname{Ker} \Delta_0$
= $B_{p,\lambda\mu} \varphi^{\otimes p} U_p^{-1} | \operatorname{Ker} \Delta_0 \otimes \operatorname{Ker} \Delta_0$ mod Im Σ_{λ}

because Ker $\Delta_0 \otimes$ Ker $\Delta_0 \subset$ Ker $\widetilde{\Delta}_0$.

In case of coalgebras, by the same argument as above we obtain

$$U_{p,\lambda}\psi^{\otimes p}B_{p,\lambda} = (B_{p,\lambda} \otimes B_{p,\lambda})\prod_{1 \leq s \leq (p-1)/2} \widetilde{D}_{p,\lambda}^{p-s}U_p\psi^{\otimes p}$$

and

$$U_{p\mu}\psi^{\otimes p} = \tilde{D}^{0}_{p,-\mu}U_{p}\psi^{\otimes p}.$$

q.e.d.

Here, from (1.4) and (2.12) follows the conclusion immediately.

Finally we discuss (d, λ) -Hopf algebras. Let A be a quasi (d, λ) -Hopf algebra. We can identify $\Phi_{\lambda}(A)$ with $\Psi_{\lambda}(A)$ by the canonical isomorphism κ , [1], (5.11). Then $\Phi_{\lambda}(A) = \Psi_{\lambda}(A)$ becomes a quasi Hopf algebra, called the derived quasi Hopf algebra of A, which has multiplication $\Phi_{\lambda}(\varphi)$ and comultiplication $\Psi_{\lambda}(\psi)$, [1], (5.16). On the other hand, we introduce another structure of differential quasi Hopf algebra on A, denoted by μA , which has multiplication $\mu \varphi = \varphi(1 + \mu d\sigma \otimes d)$ and comultiplication $\mu \psi = (1 - \mu d\sigma \otimes d)\psi$. Identifying $\Phi_0(\mu A)$ with $\Psi_0(\mu A)$ by the canonical isomorphism, $\Phi_0(\mu A) = \Psi_0(\mu A)$ gains a structure of quasi Hopf algebra with multiplication $\Phi_0(\mu \varphi)$ and comultiplication $\Psi_0(\mu \psi)$.

Applying (3.2) to a quasi (d, λ) -Hopf algebra A, we obtain

(3.4) **Proposition.** The map $B_{p,\lambda}$ induces a natural isomorphism

$$\Phi(B_{p,\lambda}): \Phi_0(\mu A) \to \Phi_\lambda(A)$$

of quasi derived Hopf algebras.

4. Let L be an extension field of K. We regard L as a G_2 -module over K by $L_0=L$ and $L_1=\{0\}$. Let A be a differential algebra (or coalgebra). We

can regard $L \underset{\kappa}{\otimes} A$ as a differential algebra (or coalgebra) over L equipped with multiplication

$$(L \underset{\kappa}{\otimes} A) \underset{L}{\otimes} (L \underset{\kappa}{\otimes} A) \cong L \underset{\kappa}{\otimes} (A \underset{\kappa}{\otimes} A) \xrightarrow{1 \otimes \varphi} L \underset{\kappa}{\otimes} A$$

(or comultiplication

$$(4.1) \quad \text{Lemma.} \qquad \begin{array}{c} L \bigotimes_{\kappa} A \xrightarrow{1 \otimes \psi} L \bigotimes_{\kappa} (A \bigotimes_{\kappa} A) \simeq (L \bigotimes_{\kappa} A) \bigotimes_{L} (L \bigotimes_{\kappa} A)) \, . \\ K & L \bigotimes_{\kappa} F^{n} A = F^{n} (L \bigotimes_{\kappa} A) \quad for \ all \ n \ge 0 \\ (or \qquad \qquad L \bigotimes_{\kappa} G^{n} A = G^{n} (L \bigotimes_{\kappa} A) \quad for \ all \ n \ge 0) \, . \end{array}$$

The proof is obvious in case of algebras, and can be given by a choice of homogeneous bases of L and A as modules in case of coalgebras.

(4.2) Lemma. $Q^n(L \bigotimes_{\kappa} A) = L \bigotimes_{\kappa} Q^n A \text{ for all } n \ge 0$ (or $P^n(L \bigotimes_{\kappa} A) = L \bigotimes_{\kappa} P^n A \text{ for all } n \ge 0$).

Proof. $L \bigotimes_{\kappa}$ is an exact functor. Therefore the lemma follows from (4.1).

(4.3) **Proposition.** A is semi-connected if and only if $L \bigotimes_{\mathbf{r}} A$ is so.

Proof. The case of algebras: First suppose that $L \bigotimes_{\kappa} A$ is semi-connected, i.e., $\bigcap_{n \ge 1} F^n(L \bigotimes_{\kappa} A) = \{0\}$ [1], **1.8.** Take any $x \in \bigcap_{n \ge 1} F^n A$, then (4.1) implies

$$1 \otimes x \in \bigcap_{n \geq 1} F^n(L \otimes A).$$

Hence A is semi-connected.

Conversely, suppose that A is semi-connected. Take any $y \in \bigcap_{n \ge 1} F^n$ $(L \bigotimes_{\kappa} A)$. Choosing a homogeneous basis $T = \{x_i\}_{i \in J}$ of A, we may put $y = \sum_{1 \le j \le n} l_j \otimes x_j$ where $l_j \in L$ and $x_j \in T$. Since A is semi-connected there exists an integer m > 0 such that

$$K\{x_1, \cdots, x_n\} \cap F^m A = \{0\}$$

where $K\{x_1, \dots, x_n\}$ denotes the submodule of A generated by x_1, \dots, x_n . Moreover this means by (4.1) that

$$L \underset{\kappa}{\otimes} K \{x_1, \cdots, x_n\} \cap F^m(L \underset{\kappa}{\otimes} A) = L \underset{\kappa}{\otimes} (K\{x_1, \cdots, x_n\} \cap F^m A) = \{0\}$$

for some m > 0. However

$$y \in L \underset{\kappa}{\otimes} K\{x_1, \cdots, x_n\} \cap F^m(L \underset{\kappa}{\otimes} A)$$
, hence $y = 0$.

Therefore $L \bigotimes A$ is semi-connected.

The case of coalgebras can be proved by a routine discussion. q.e.d.

Let A be a quasi (d, λ) -Hopf algebra. Then $L \bigotimes A$ becomes a quasi (d, λ)-Hopf algebra over L where $\lambda = \lambda \otimes 1 \in L = K \bigotimes_{F} L$.

(4.4) **Proposition.** A is coprimitive (or primitive) if and only if $L \bigotimes A$ is so.

Proof. From (4.1) and (4.2) it follows that

$$P(L \underset{\kappa}{\otimes} A) \cap F^{2}(L \underset{\kappa}{\otimes} A) = L \underset{\kappa}{\otimes} (P(A) \cap F^{2}A)$$

and

$$P(L \bigotimes_{\kappa} A) + F^2(L \bigotimes_{\kappa} A) = L \bigotimes_{\kappa} (P(A) + F^2A)$$

These prove the proposition.

5. Let K^{p} be the subfield of K generated by elements k^{p} , $k \in K$ and $\theta_K: K \to K$ be the monomorphism defined by $\theta_K(k) = k^p$. $\theta_K(K) = K^p$. Let Mand N be modules. We say that a map $\theta: M \rightarrow N$ is θ_K -linear if

$$\theta(kx) = \theta_K(k)\theta(x)$$
 and $\theta(x+y) = \theta(x)+\theta(y)$

for all x, $y \in M$ and all $k \in K$. If $\theta : M \to N$ is θ_K -linear, then $\theta(M)$ is a module over K^p . In particular we say that a θ_K -linear map $\theta : M \rightarrow N$ is a θ_K -isomorphism if θ is injective and $N = K \otimes \theta(M)$. Remark that a θ_K -isomorphism θ is

bijective if K is a perfect field.

Let A be a differential algebra (or coalgebra). Define a map $\mathcal{E}_m : A^{\otimes m} \to A^{\otimes m}$ by

$$\varepsilon_m(x_1\cdots x_m) = \begin{cases} (-1)^n x_1 \otimes \cdots \otimes x_m & p \equiv 3 \mod 4 \\ x_1 \otimes \cdots \otimes x_m & \text{others} \end{cases}$$

where $n = \sum_{1 \le i < j \le m} \sigma(x_i) \sigma(x_j)$ and σ is the canonical involution [1], (1.1). By an induction on m we have the following relation

(5.1)
$$(\varphi \mathcal{E}_2)_m^{w_m} = \varphi_m^{w_m} \mathcal{E}_{m+1}$$
 (or $(\mathcal{E}_2 \psi)_m^{w_m} = \mathcal{E}_{m+1} \psi_m^{w_m}$) for each $w_n \in W_n$.

The diagonal map $\Delta: A \rightarrow A^{\otimes p}$, $\Delta(x) = x^{\otimes p}$ for a homogeneous element $x \in A$, induces a map

(5.2)
$$\theta_p: A \to \Phi_0(A) (\text{or } \Psi_0(A)).$$

- (5.3) **Lemma.** The above map θ_p satisfies the following properties :
- i) θ_p is a θ_K -isomorphism,
- ii) "multiplicative up to signs", i.e.,

$$\theta_{p} \varphi_{n}^{w_{n}} \mathcal{E}_{n+1} = \Phi_{0}(\varphi)_{n}^{w_{n}} \theta_{p}^{\otimes n+1} \qquad \text{for each } w_{n} \in W_{n}$$

(or ii)* "comultiplicative up to signs", i.e.,

$$\theta_p^{\otimes n+1} \mathcal{E}_{n+1} \psi_n^{w_n} = \Psi_0(\psi)_n^{w_n} \theta_p \quad \text{for each } w_n \in W_n$$
,

iii) compatible with η and ε , i.e.,

$$\theta_{p}\eta = \eta\theta_{K}$$
 and $\varepsilon\theta_{p} = \theta_{K}\varepsilon$, and

iv) natural, i.e.,

$$\theta_{p}f = \Phi_{0}(f)\theta_{p}$$
 (or $\Psi_{0}(f)\theta_{p}$)

for any morphism $f : A \rightarrow B$ of algebras (or coalgebras).

Proof. θ_p is θ_K -linear because $(kx)^{\otimes p} = k^p x^{\otimes p}$ and $(x+y)^{\otimes p} \equiv x^{\otimes p} + y^{\otimes p}$ mod Im Σ_0 . Choosing a homogeneous basis $T = \{x_i\}_{i \in I}$ of A, we see by [1], **5.3**. that $\Phi_0(A) \cong \Psi_0(A)$ is generated by $\{x_i^{\otimes p} ; x_i \in T\}$. Hence θ_p is injective and $K \bigotimes_{K^p} \theta_p(A) = \Phi_0(A)$ (or $\Psi_0(A)$). Thus θ_p is a θ_K -isomorphism. Since iii) and iv) are obvious by the definition of θ_p it remains to prove ii) and ii)*.

Remark that $U_p(x \otimes y)^{\otimes p} = \mathcal{E}_2(x^{\otimes p} \otimes y^{\otimes p})$. Then we obtain

$$\varphi^{\otimes p}U_p^{-1}(x^{\otimes p}\otimes y^{\otimes p}) = (\varphi \mathcal{E}_2(x\otimes y))^{\otimes p}$$

and

$$U_{p}\psi^{\otimes p}(x^{\otimes p}) = U_{p}(\sum_{i} x_{i} \otimes x_{i}')^{\otimes p} \equiv U_{p}(\sum_{i} (x_{i} \otimes x_{i}')^{\otimes p}) \equiv \sum_{i} \mathcal{E}_{2}(x_{i}^{\otimes p} \otimes x_{i}'^{\otimes p})$$

mod Im $\tilde{\Sigma}_{0}$,

where $\psi(x) = \sum_i x_i \otimes x'_i$, and

$$\operatorname{Im} \Sigma_{\scriptscriptstyle 0} \subset \operatorname{Im} \Delta_{\scriptscriptstyle 0} \otimes (A^{\otimes p}) + (A^{\otimes p}) \otimes \operatorname{Im} \Delta_{\scriptscriptstyle 0}.$$

Thus

$$\Phi_{0}(\varphi)\theta_{p}\otimes\theta_{p}=\theta_{p}(\varphi\varepsilon_{2}) \quad \text{and} \quad \Psi_{0}(\psi)\theta_{p}=\theta_{p}\otimes\theta_{p}(\varepsilon_{2}\psi) \ .$$

Using an induction on n we can easily verify that

$$\Phi_{\scriptscriptstyle 0}(\varphi)^{w_n}_n\theta^{\otimes n+1}_p=\theta_{\scriptscriptstyle p}(\varphi\varepsilon_2)^{w_n}_n \quad \text{and} \quad \Psi_{\scriptscriptstyle 0}(\psi)^{w_n}_n\theta_{\scriptscriptstyle p}=\theta^{\otimes n+1}_p(\varepsilon_2\psi)^{w_n}_n$$

for all $w_n \in W_n$. Now by (5.1) we obtain ii) and ii)*.

123

Since θ_p is multiplicative (or comultiplicative) up to signs $\theta_p(A)$ becomes an algebra (or coalgebra) over K^p with multiplication (or comultiplication) induced by that of $\Phi_0(A)$ (or $\Psi_0(A)$). We see by (5.3) that

(5.4)
$$\theta_p(F^nA) = F^n(\theta_p(A))$$
 (or $\theta_p(G^nA) = G^n(\theta_p(A))$) for all $n \ge 0$.

6. Here we consider a similar map to (5.2) when p=2 and $\lambda \neq 0$. Suppose p=2 and $\lambda \neq 0$. The diagonal map $\Delta : Z(A) \rightarrow Z(A) \otimes Z(A)$ given by $\Delta(x) = x \otimes x$, induces a map

(6.1)
$$\theta_{2,\lambda}: H(A) \to \Phi_{\lambda}(A) \text{ (or } \Psi_{\lambda}(A)).$$

(6.2) **Lemma.** The above map $\theta_{2,\lambda}$ satisfies the following properties :

- i) $\theta_{2,\lambda}$ is a θ_K -isomorphism,
- ii) "multiplicative", i.e.,

$$\theta_{2,\lambda} H(\varphi)_n^{w_n} = \Phi_{\lambda}(\varphi)_n^{w_n} \theta_{2,\lambda}^{\otimes n+1}$$

(or ii)* "comultiplicative", i.e.,

$$heta_{2,\lambda}^{\otimes n+1}H(\psi)_n^{w_n}=\Psi_\lambda(\psi)_n^{w_n} heta_{2,\lambda})$$
 ,

iii) compatible with η and ε , i.e.,

$$\theta_{2,\lambda}\eta = \eta \theta_K$$
 and $\mathcal{E}\theta_{2,\lambda} = \theta_K \mathcal{E}$, and

iv) natural, i.e.,

$$\theta_{2,\lambda}H(f) = \Phi_{\lambda}(f)\theta_{2,\lambda} \text{ (or } \Psi_{\lambda}(f)\theta_{2,\lambda})$$

for any morphism $f : A \rightarrow B$ of differential algebras (or coalgebras).

Proof. Choose a *d*-stable homogeneous basis $\{x_{\iota}, dx_{\iota}, y_{\kappa}\}_{\iota \in I, \kappa \in J}$ of A where $dy_{\kappa}=0$. Then $\Phi_{\lambda}(A)=\Psi_{\lambda}(A)$ is generated by $\{y_{\kappa}^{\otimes 2}\}_{\kappa \in J}$, [1], (5.8) and (5.9.2). Hence proofs are easy except ii)*.

As is well known

(6.3)
$$\psi(Z(A)) \subset Z(A) \otimes Z(A) + d(A \otimes A)$$
.

Put

$$\psi(x) = \sum_{i} z_{i} \otimes z_{i}' + \sum_{k} (du_{k} \otimes u_{k}' + u_{k} \otimes du_{k}')$$

for $x \in Z(A)$ where $z_i, z'_i \in Z(A)$. Routine computations show :

$$(1 \otimes T_{\lambda} \otimes 1)(\sum_{i,j} z_i \otimes z'_i \otimes z_j \otimes z'_j) \equiv \sum_i z_i^{\otimes 2} \otimes z'_i^{\otimes 2}, (1 \otimes T_{\lambda} \otimes 1)(\sum_{i,k} (z_i \otimes z'_i \otimes u_k \otimes du'_k + u_k \otimes du'_k \otimes z_i \otimes z'_i)) \equiv 0, (1 \otimes T_{\lambda} \otimes 1)(\sum_{i,k} (z_i \otimes z'_i \otimes du_k \otimes u'_k + du_k \otimes u'_k \otimes z_i \otimes z'_i)) \equiv 0, (1 \otimes T_{\lambda} \otimes 1)(\sum_{k,l} (u_k \otimes du'_k \otimes u_l \otimes du'_l + du_k \otimes u'_k \otimes du_l \otimes u'_l))$$

$$= \sum_{\mathbf{k}} (u_{\mathbf{k}}^{\otimes 2} \otimes (du'_{\mathbf{k}})^{\otimes 2} + (du_{\mathbf{k}})^{\otimes 2} \otimes u'_{\mathbf{k}}^{\otimes 2}) ,$$

$$(1 \otimes T_{\lambda} \otimes 1) (\sum_{\mathbf{k}, \mathbf{l}} (u_{\mathbf{k}} \otimes du'_{\mathbf{k}} \otimes du_{\mathbf{l}} \otimes u'_{\mathbf{k}} + du_{\mathbf{k}} \otimes u'_{\mathbf{k}} \otimes u_{\mathbf{l}} \otimes du'_{\mathbf{l}})) \equiv 0$$

$$\mod (A^{\otimes 2})_{\lambda} \otimes \operatorname{Im} \Delta_{\lambda} + \operatorname{Im} \Delta_{\lambda} \otimes (A^{\otimes 2})_{\lambda} .$$

Therefore we obtain that

(6.4)
$$(1 \otimes T_{\lambda} \otimes 1) \psi(x)^{\otimes 2} \equiv \sum_{i} z_{i}^{\otimes 2} \otimes z_{i}^{\otimes 2} + \sum_{k} ((du_{k})^{\otimes 2} \otimes u_{k}^{\otimes 2} + u_{k}^{\otimes 2} \otimes (du_{k}^{\prime})^{\otimes 2})$$

 $\mod (A^{\otimes 2})_{\lambda} \otimes \operatorname{Im} \Delta_{\lambda} + \operatorname{Im} \Delta_{\lambda} \otimes (A^{\otimes 2})_{\lambda}.$

Thus we have

$$\Psi_{\lambda}(\psi)\theta_{2,\lambda} = (\theta_{2,\lambda} \otimes \theta_{2,\lambda})H(\psi) .$$

General case is obtained immediately by an induction on n.

q.e.d.

(6.2) means that $\theta_{2,\lambda}: H(A) \to \Phi_{\lambda}(A)$ (or $\Psi_{\lambda}(A)$) is a θ_{K} -isomorphism of algebras (or coalgebras). Hence $\theta_{2,\lambda}(H(A))$ is an algebra (or coalgebra) over K^{2} with multiplication (or comultiplication) induced by that of $\Phi_{\lambda}(A)$ (or $\Psi_{\lambda}(A)$). And we see by (6.2) that

(6.5)
$$\theta_{2,\lambda}(F^nH(A)) = F^n(\theta_{2,\lambda}(H(A)))$$
 for all $n \ge 0$
(or $\theta_{2,\lambda}(G^nH(A)) = G^n(\theta_{2,\lambda}(H(A)))$ for all $n \ge 0$).

7. Now we study properties of $\Phi_{\lambda}(A)$ (or $\Psi_{\lambda}(A)$) making use of maps θ_{μ} and $\theta_{2,\lambda}$.

First we examine semi-connectedness of an algebra $\Phi_{\lambda}(A)$ (or coalgebra $\Psi_{\lambda}(A)$). Putting (3.2), (4.3), (5.3) and (6.2) together we have

(7.1) **Theorem.** Let A be a differential algebra (or coalgebra) over a field K of characteristic $p \neq 0$ and $\lambda \in K$.

i) When p is odd or p=2 and $\lambda d=0$, A is semi-connected if and only if $\Phi_{\lambda}(A)$ (or $\Psi_{\lambda}(A)$) is so.

ii) When p=2 and $\lambda \neq 0$, H(A) is semi-connected if and only if $\Phi_{\lambda}(A)$ (or $\Psi_{\lambda}(A)$) is so.

Proof. First we shall prove the theorem in case $\lambda d=0$. Remark that $\Phi_{\lambda}(A)=\Phi_0(A)$ (or $\Psi_{\lambda}(A)=\Psi_0(A)$) in case $\lambda d=0$. By (5.4) and the injectivity of θ_p , A is semi-connected if and only if $\theta_p(A)$ is so. Since multiplication (or comultiplication) of $\Phi_0(A)$ (or $\Psi_0(A)$) induces that of $\theta_p(A)$, $K \underset{\kappa^{\flat}}{\otimes} \theta_p(A)$ coincides with $\Phi_0(A)$ as an algebra (or coalgebra). Now (4.3) proves the theorem in case $\lambda d=0$.

Similarly (4.3), (6.2) and (6.5) prove that the theorem is true in case p=2 and $\lambda \neq 0$.

In case p odd we prove the theorem, combining the theorem in case $\lambda = 0$

with
$$(3.1)$$
 and (3.2) .

Next we examine coprimitivity and primitivity of the derived Hopf algebra $\Phi_{\lambda}(A) = \Psi_{\lambda}(A)$.

(7.2) **Theorem.** Let A be a quasi (d, λ) -Hopf algebra over a field K of characteristic $p \neq 0$.

i) When p is odd or p=2 and $\lambda d=0$, A is coprimitive (or primitive) if and only if $\Phi_{\lambda}(A)=\Psi_{\lambda}(A)$ is so.

ii) When p=2 and $\lambda \neq 0$, H(A) is coprimitive (or primitive) if and only if $\Phi_{\lambda}(A) = \Psi_{\lambda}(A)$ is so.

Proof. Making use of (3.4), (4.4), (5.3), (5.4), (6.2) and (6.5) the theorem is proved in a parallel way to (7.1).

8. Let A be a differential algebra (or coalgebra) which is associative and λ -commutative. Suppose p is odd and $\mu = \lambda/2 \in K$. By (3.1) i) μA is associative and commutative. Therefore we can consider maps

$$\xi_{\lambda}: \Phi_{\lambda}(A) \to A \text{ and } \xi_{0}: \Phi_{0}(\mu A) \to \mu A$$

(or

$$\eta_{\lambda}: A \to \Psi_{\lambda}(A) \text{ and } \eta_{0}: A \to \Psi_{0}(\mu A))$$

induced by φ_{p-1} and $_{\mu}\varphi_{p-1}$ (or ψ_{p-1} and $_{\mu}\psi_{p-1}$) respectively [1], **6.3**.. ξ_{λ} and ξ_0 (or η_{λ} and η_0) become morphisms of differential algebras (or coalgebras) by the λ -commutativity of A and the commutativity of μA .

(8.1) **Proposition.** The following diagram

$$\begin{array}{cccc} \Phi_{0}(\mu A) \xrightarrow{\xi_{0}} \mu A & \text{(or } \mu A \xrightarrow{\eta_{0}} \Psi_{0}(\mu A) \\ \Phi(B_{p,\lambda}) & & & \\ \Phi_{\lambda}(A) \xrightarrow{\xi_{\lambda}} A & & A \xrightarrow{\eta_{\lambda}} \Psi_{\lambda}(A) \end{array} \right)$$

is commutative.

Proof. The case of algebras: It is sufficient to show that

$$\varphi_{p-1}B_{p,\lambda} |\operatorname{Ker} \Delta_0 = \varphi_{p-1} \prod_{1 \le j < k \le p} (1 + \mu d_j d_k) |\operatorname{Ker} \Delta_0$$

because $_{\mu}\varphi_{p-1} = \varphi_{p-1} \prod_{1 \le j \le k \le p} (1 + \mu d_j d_k)$ by (3.1). Using (1.1), (1.2) and (2.7) we compute

$$(8.2) \quad \begin{array}{l} B_{p,-\lambda} \prod_{1 \leq j < k \leq p} (1 + \mu d_j d_k) \\ = \prod_{1 \leq j < k \leq p, k-j \geq (p+1)/2} (1 - 2\mu d_j d_k) \prod_{1 \leq j < k \leq p} (1 + \mu d_j d_k) \end{array}$$

126

 λ -Modified Differential Hopf Algebras

$$= \prod_{1 \le j < k \le p} (\prod_{k-j \le (p-1)/2} (1 + \mu d_j d_k) \prod_{k-j \ge (p+1)/2} (1 - \mu d_j d_k))$$

=
$$\prod_{1 \le s \le (p-1)/2} (\prod_{1 \le j \le p-s} (1 + \mu d_j d_{s+j}) \prod_{1 \le j \le s} (1 + \mu d_{p-s+j} d_j))$$

=
$$\prod_{1 \le s \le (p-1)/2} D_{p,\mu}^s.$$

Making use of (1.4) and (2.11) it follows that

$$\begin{aligned} \varphi_{p-1}(\prod_{1\leq j< k\leq p}(1+\mu d_j d_k)-B_{p,\lambda})(\operatorname{Ker} \Delta_0) \\ = \varphi_{p-1}B_{p,\lambda}(B_{p,-\lambda}\prod_{1\leq j< k\leq p}(1+\mu d_j d_k)-1)(\operatorname{Ker} \Delta_0) \\ = \varphi_{p-1}B_{p,\lambda}(\prod_{1\leq s\leq (p-1)/2}D_{p,\mu}^s-1)(\operatorname{Ker} \Delta_0) \\ \subset \varphi_{p-1}B_{p,\lambda}(\operatorname{Im} \Sigma_0) = 0 . \end{aligned}$$

The case of coalgebras: Since

$$\prod_{1 \leq j < k \leq p} (1 - \mu d_j d_k) B_{p,\lambda} = \prod_{1 \leq s \leq (p-1)/2} D_{p,-\mu}^s$$

by (8.2) and

$$B_{\boldsymbol{p},\boldsymbol{\lambda}\boldsymbol{\mu}}\psi_{\boldsymbol{p}-1}-\psi_{\boldsymbol{p}-1}=B_{\boldsymbol{p},\boldsymbol{\lambda}}(\prod_{1\leq j< k\leq \boldsymbol{p}}(1-\boldsymbol{\mu}d_{j}d_{k})B_{\boldsymbol{p},\boldsymbol{\lambda}}-1)B_{\boldsymbol{p},-\boldsymbol{\lambda}}\psi_{\boldsymbol{p}-1}$$

by (3.1), we see by (1.4) and (2.11) that

$$\begin{split} \mathrm{Im}(B_{p,\lambda\,\mu}\psi_{p-1}-\psi_{p-1}) \subset B_{p,\lambda}(\prod_{1\leq s\leq (p-1)/2}D^s_{p,-\mu}-1)(\mathrm{Ker}\ \Sigma_0) \\ \subset B_{p,\lambda}(\mathrm{Im}\ \Delta_0) \subset \mathrm{Im}\ \Delta_\lambda \ . \end{split}$$

Thus

$$B_{p,\lambda\,\mu}\psi_{p-1}\equiv\psi_{p-1}\quad \mathrm{mod}\,\mathrm{Im}\,\Delta_{\lambda}\,.$$

Hence the proof is complete.

Finally we discuss Im ξ_{λ} . Let A be a quasi (d, λ) -Hopf algebra whose multiplication φ is associative and λ -commutative.

Define a map

$$\xi_{b}: A \to A$$

by $\xi_p(x) = x^p$ [2], **4.19**., and by A_0 (or A_1) we denote the submodule of A of even (or odd) type.

First suppose p is odd and $\mu = \lambda/2 \in K$. We have

(8.3) **Lemma.** The map ξ_p satisfies the following properties:

- i) $\xi_p | A_0$ is θ_K -linear,
- ii) $\xi_p(xy) = \xi_p(x)\xi_p(y)$ for $x, y \in A_0$, and

iii) for $x \in A_0$, putting $\psi(x) = \sum_i y_i \otimes y'_i + \sum_j z_j \otimes z'_j$, $y_i, y'_i \in A_0$ and $z_j, z'_j \in A_1$, we obtain

$$\psi \xi_p(x) = \xi_p \otimes \xi_p(\sum_i y_i \otimes y'_i + \mu \sum_j dz_j \otimes dz'_j).$$

Proof. By [1],(6.10) we can easily verify i) and ii).

iii) is proved as follows. By (3.1) i) a differential quasi Hopf algebra μA has associative and commutative multiplication $\mu \varphi$. Hence, as in classical case, we obtain

$${}_{\mu}\psi_{\mu}\varphi_{p-1}(x^{\otimes p}) = {}_{\mu}\varphi_{p-1}\otimes_{\mu}\varphi_{p-1}(\sum_{i}(y_{i}^{\otimes p}\otimes y_{i}^{\prime\otimes p} + \mu^{p}(dz_{j})^{\otimes p}\otimes (dz_{j}^{\prime})^{\otimes p}))$$

because we can express as

$$_{\mu}\psi(x) = \sum_{i}(y_{i}\otimes y'_{i} - \mu(dy_{i}\otimes dy'_{i})) + \sum_{j}(z_{j}\otimes z'_{j} + \mu(dz_{j}\otimes dz'_{j})).$$

By (3.1) and (8.1) we have

(8.4)
$$\varphi_{p-1}B_{p,\lambda}(w^{\otimes p}) = {}_{\mu}\varphi_{p-1}(w^{\otimes p}) = \begin{cases} w^p & \text{if } w \in A_0 \\ 0 & \text{if } w \in A_1 \end{cases}$$

because by λ -commutativity of φ

$$(dw)^2 = 0$$
 for $w \in A_0$ and $\mu \varphi(w \otimes w) = 0$ for $w \in A_0$

[1], (6.9). Therefore we have

$$\psi(x^{p}) = (1 + \mu d\sigma \otimes d) (\sum_{i} y_{i}^{p} \otimes y_{i}^{\prime p} + \mu^{p} \sum_{j} (dz_{j})^{p} \otimes (dz_{j}^{\prime})^{p})$$
$$= \sum_{i} y_{i}^{p} \otimes y_{i}^{\prime p} + \mu^{p} \sum_{j} (dz_{j})^{p} \otimes (dz_{j}^{\prime})^{p}$$

using the fact $d(y^p)=0$ for $y \in A_0$, [1], (6.9).

The above lemma says that

(8.5)
$$K \bigotimes_{p} \xi_p(A_0)$$
 becomes a quasi sub Hopf algebra of A when p is odd.

Next suppose p=2. Then we have

(8.6) **Lemma.** The map ξ_2 satisfies the following properties:

i) $\xi_2 | \operatorname{Ker} \lambda d \text{ is } \theta_K \text{-linear,}$

ii) $\xi_2(xy) = \xi_2(x)\xi_2(y)$ for $x, y \in \text{Ker } \lambda d$, and

iii) for $x \in \text{Ker } \lambda d$, putting $\psi(x) \equiv \sum_i y_i \otimes y'_i \mod \text{Im } \lambda d$, $y_i y'_i \in \text{Ker } \lambda d$, we obtain

$$\psi \xi_2(x) = \xi_2 \otimes \xi_2(\sum_i y_i \otimes y'_i) .$$

Proof. i) and ii) is obvious by [1], (6.10). By (6.3) we may put

$$\psi(x) = \sum_i z_i \otimes z'_i + \sum_k (du_k \otimes u'_k + u_k \otimes du'_k) \text{ with } z_i, z'_i \in Z(A)$$
.

Then by (6.4) we get

q.e.d.

$$\psi(x^2) = \sum_i z_i^2 \otimes z_i'^2 + \sum_k (du_k)^2 \otimes u_k'^2 + u_k^2 \otimes (du_k')^2)$$
.

When $\lambda=0$ this completes the proof of iii). When $\lambda \pm 0$ remark that $(du)^2=0$ by [1], (6.9), hence also the proof is complete.

The above lemma says that

(8.7) $K \bigotimes_{K^2} \xi_2(\operatorname{Ker} \lambda d)$ becomes a quasi sub Hopf algebra of A when p=2.

On the other hand we know that Im ξ_{λ} is a quasi sub Hopf algebra of A because $\xi_{\lambda} : \Phi_{\lambda}(A) = \Psi_{\lambda}(A) \to A$ is a morphism of quasi (d, λ) -Hopf algebras and $\Phi_{\lambda}(A) = \Psi_{\lambda}(A)$ has a trivial differential, [1], (6.5).

Here we have

(8.8) **Proposition.** i) When p=2, $\operatorname{Im} \xi_{\lambda} = K \bigotimes_{K^2} \xi_2(\operatorname{Ker} \lambda d)$ and it is a quasi sub Hopf algebra of A.

ii) When p is odd, $\operatorname{Im} \xi_{\lambda} = K \bigotimes_{K^{p}} \xi_{p}(A_{0})$ and it is a quasi sub Hopf algebra of A.

Proof. When p is odd, we consider the following composition map

$$\xi'_{p}: A = \mu A \xrightarrow{\theta_{p}} \Phi_{0}(\mu A) \xrightarrow{B_{p,\lambda}} \Phi_{\lambda}(A) \xrightarrow{\xi_{\lambda}} A$$

where $\mu = \lambda/2 \in K$. By (3.4) and (5.3) i) we see that Im $\xi_{\lambda} = K \bigotimes_{K^{\beta}} \xi'_{p}(A)$. Since (8.4) is equivalent to say that

$$\xi'_{p}|A_{0} = \xi_{p}|A_{0}$$
 and $\xi'_{p}|A_{1} = 0$.

we get the proposition in case p odd.

Next suppose p=2. We see easily that

$$\xi_2 = \xi_\lambda \theta_2$$
 when $\lambda d = 0$,

and

$$\xi_2 | \operatorname{Ker} \lambda d = \xi_\lambda \theta_{2,\lambda} \pi$$
 when $\lambda \neq 0$

where $\pi : Z(A) \rightarrow H(A)$ is the natural projection. Therefore it follows from (5.3) i) and (6.2) i) that

$$\operatorname{Im} \xi_{\lambda} = K \bigotimes_{K^2} \xi_2(\operatorname{Ker} \lambda d) \,.$$

OSAKA CITY UNIVERSITY

Z. Yosimura

References

- S. Araki and Z. Yosimura: Differential Hopf algebras modelled on K-theory mod p. 1, Osaka J. Math. 8 (1971), 151-206.
- [2] J.W. Milnor and J.C. Moore: On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.