ようこそ ゲスト さん
雑誌ブラウズ
雑誌 全て
大阪大学 刊行物
ランキング
アクセスランキング
ダウンロードランキング
博士論文のみをさがす
このアイテムのアクセス数:
9
件
(
2021-03-09
01:23 集計
)
このアイテムへのリンクには次のURLをご利用ください:
https://doi.org/10.18910/76677
このアイテムへのリンクには次のURLをご利用ください:http://hdl.handle.net/11094/76677
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
ojm57_03_647
pdf
92.3 KB
12
論文情報
タイトル
BOWMAN-BRADLEY TYPE THEOREM FOR FINITE MULTIPLE ZETA VALUES IN A₂
著者
Murahara, Hideki
Murahara, Hideki
Onozuka, Tomokazu
Onozuka, Tomokazu
Seki, Shin-ichiro
Seki, Shin-ichiro
抄録
Bowman and Bradley obtained a remarkable formula among multiple zeta values. The formula states that the sum of multiple zeta values for indices which consist of the shuffle of two kinds of the strings {1, 3, . . . , 1, 3} and {2, . . . , 2} is a rational multiple of a power of π². Recently, Saito and Wakabayashi proved that analogous but more general sums of finite multiple zeta values in an adelic ring A₁ vanish. In this paper, we partially lift Saito-Wakabayashi’s theorem from A₁ to A₂. Our result states that a Bowman-Bradley type sum of finite multiple zeta values in A₂ is a rational multiple of a special element and this is closer to the original Bowman-Bradley theorem.
公開者
Osaka University and Osaka City University, Departments of Mathematics
掲載誌名
Osaka Journal of Mathematics
巻
57
号
3
開始ページ
647
終了ページ
653
刊行年月
2020-07
ISSN
00306126
NCID
AA00765910
URL
http://hdl.handle.net/11094/76677
言語
英語
DOI
info:doi/10.18910/76677
カテゴリ
紀要論文 Departmental Bulletin Paper
Osaka Journal of Mathematics / Volume 57, Number 3 (2020-7)
論文詳細を表示
著者版フラグ
publisher
NII資源タイプ
紀要論文
ローカル資源タイプ
紀要論文
dcmi資源タイプ
text
DCTERMS.bibliographicCitation
Osaka Journal of Mathematics.57(3) P.647-P.653
DC.title
BOWMAN-BRADLEY TYPE THEOREM FOR FINITE MULTIPLE ZETA VALUES IN A₂
DC.creator
Murahara, Hideki
Onozuka, Tomokazu
Seki, Shin-ichiro
DC.publisher
Osaka University and Osaka City University, Departments of Mathematics
DC.language" scheme="DCTERMS.RFC1766
英語
DCTERMS.issued" scheme="DCTERMS.W3CDTF
2020-07
DC.identifier" scheme="DCTERMS.URI
http://hdl.handle.net/11094/76677
DCTERMS.abstract
Bowman and Bradley obtained a remarkable formula among multiple zeta values. The formula states that the sum of multiple zeta values for indices which consist of the shuffle of two kinds of the strings {1, 3, . . . , 1, 3} and {2, . . . , 2} is a rational multiple of a power of π². Recently, Saito and Wakabayashi proved that analogous but more general sums of finite multiple zeta values in an adelic ring A₁ vanish. In this paper, we partially lift Saito-Wakabayashi’s theorem from A₁ to A₂. Our result states that a Bowman-Bradley type sum of finite multiple zeta values in A₂ is a rational multiple of a special element and this is closer to the original Bowman-Bradley theorem.
DC.identifier
info:doi/10.18910/76677
citation_title
BOWMAN-BRADLEY TYPE THEOREM FOR FINITE MULTIPLE ZETA VALUES IN A₂
citation_author
Murahara, Hideki
Onozuka, Tomokazu
Seki, Shin-ichiro
citation_publisher
Osaka University and Osaka City University, Departments of Mathematics
citation_language
英語
citation_date
2020-07
citation_journal_title
Osaka Journal of Mathematics
citation_volume
57
citation_issue
3
citation_firstpage
647
citation_lastpage
653
citation_issn
00306126
citation_public_url
http://hdl.handle.net/11094/76677
citation_doi
info:doi/10.18910/76677